

Hydraulic Modelling

1D River Modelling with Mike11



Introduction Mike11

Overview

Software Tools for 1D River Modelling

examples for numerical simulation tools

1D Hydrodynamic Simulation

- assumptions
- river modelling elements

Theoretical Background

- unsteady flow, Saint-Venant equations
- numerical method Abbott-Ionesco scheme

Mike 11 Product

components

25.11.2018

exercise: simple academic test case, simplified river model

Part 1

Software Tools 1D River Modelling Examples

Numerical Simulation Tools

physics: based on the Saint-Venant Equations

numerics: mainly Finite Difference Method

examples

Mike11 DHI (DK) -> MIKE HYDRO River

HEC-RAS U.S. Army Corps of Engineers (USACE)

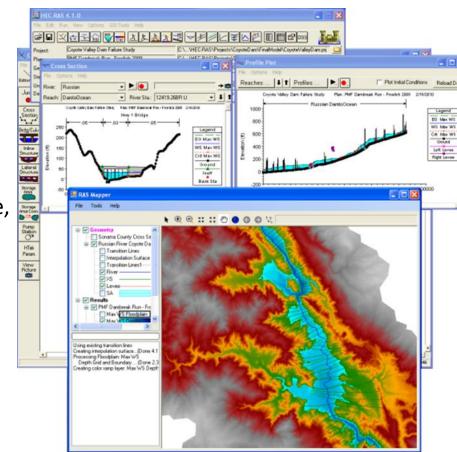
Hydrologic Engineering Center (HEC)

ISIS1D Halcrow/CH2M/Jacobs(UK) -> FloodModeller

SOBEK Deltares (NL)

Kalypso1D TU Hamburg-Harburg

Björnsen Consulting Engineers (D)



HEC-RAS

Overview

- numerical simulation of
 1D hydraulic water flow in
 natural and artificial channels
 subcritical, supercritical, mixed flow regime,
 bridges, culverts, weirs and structures
- simulation of:
 - steady flow
 - unsteady flow
 - sediment transport
 - mobile bed computations
 - water quality

HEC-RAS

Overview

provider: U.S. Army Corps of Engineers

Hydrologic Engineering Center

license: public release (see web page for details) since 1995

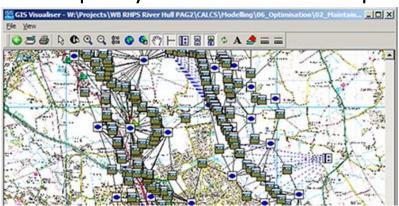
version: 5.0.6 (2018)

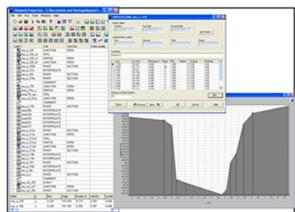
approach: unsteady flow: 1D Saint-Venant equations

finite difference method

Preissmann implicit scheme or 4-point Box scheme

Web page: http://www.hec.usace.army.mil/software/hec-ras/

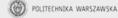




ISIS1D

Overview

- full hydrodynamic simulator for flows and levels in open channels and estuaries, complex looped and branched networks
- complex structures and operating rules
- unsteady, steady, subcritical, supercritical and transitional flows
- water quality and sediment transport modules



ISIS1D -> Flood Modeller Suite

Overview

provider: Jacobs / CH2M / Halcrow (UK)

license: ISISFree and ISIS1D (see web page for details)

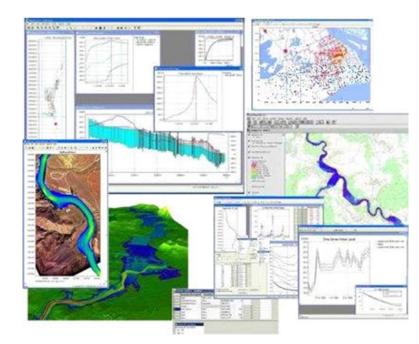
approach: unsteady flow: 1D Saint-Venant equations

finite difference method

Preissmann implicit scheme or 4-point Box scheme

Web page: https://www.floodmodeller.com

integration in Flood Modeller Suite



MIKE11

Overview

- steady and unsteady flow in branched and looped channel networks, and flood plains
- flow through a variety of structures
- subcritical and supercritical flow
- additional modules:
 - advection-dispersion
 - water quality and ecology
 - sediment transport
 - rainfall-runoff
 - flood forecasting
 - real-time operations
 - dam break

MIKE11-> MIKE HYDRO River

Overview

provider: DHI (DK)

license: commercial and DEMO mode

approach: unsteady flow: 1D Saint-Venant equations

finite difference method

Abbott-Ionescu implicit scheme (6-points)

Web page: http://www.mikepoweredbydhi.com

Mike11 succeeded in the Mike2016 edition by:

MIKE HYDRO River

Conclusion

- several similar tools available commercial, freeware, open source
- similar functionality
- same theoretical background e.g. Saint -Venant Equations
- similar numerical approaches

 e.g. implicit FDM scheme
- -> software is no problem
- key factor of success
 - data availability
 - knowledge and expertise of the user!

Part 2

1D River Modelling by

1D Hydrodynamic Numerical Simulation

25.11.2018

Introduction Mike11

FM/BTU 13

Approach

reduction of the real-world flow processes to a 1D problem

Basic Assumptions

- water is incompressible and homogeneous no significant variations in density
- the bottom slope is small $sin(\alpha) = \alpha$ and $cos(\alpha) = 1$
- wave lengths are large compared to the water depth
 flow everywhere can be regarded as having a direction parallel to the bottom
 vertical acceleration can be neglected
 hydro-static pressure variation along the vertical can be assumed
- horizontal water level and equal velocity in a cross-section

River Var Flood Modelling

- What do we need?
 - steady or unsteady flow
 - subcritical or supercritical flow?
 - sediment transport, morphodynamics ?
 - water quality?
- Which physical state variables we are looking for?
- Which coordinates (space/time) are relevant?

Steady and Unsteady Flow

steady -> all the time derivatives of a flow field vanish

$$\frac{\partial Q}{\partial t} = 0$$
 $\frac{\partial h}{\partial t} = 0$

unsteady (transient) -> some time derivatives ≠ 0

$$\frac{\partial Q}{\partial t} \neq 0$$
 $\frac{\partial h}{\partial t} \neq 0$

examples for time derivatives

Var Flood Modelling - Assumptions

- unsteady flow
- subcritical flow
- supercritical flow nearby structures only
- no morphodynamics (assumption!)
- no water quality study and or impact to HD
- physical state variables: water level and discharge
- coordinates: 1D along the river and time 2D cross-section vertical to river: value integration / average

River Model Information Components

geometry river location by points (geospatial location)

cross section vertical to river branches

topology connection of branches -> channel network

physics parameter for physical descriptions

of phenomena's such as gravitation, friction, ...

• structures description of different hydraulics structures,

e.g. weir, culverts, bridges, pumps, ...

• boundary cond. physical state variables at spatial model boundary

initial condition physical state variables at begin of simulation period

 simulation period, time step, spatial approximation, numerical parameter, stability criteria

Geometry and Topology Data

- list of points in a 2D earth surface coordinate reference system
 - -> global 2D geospatial coordinates
- connection of points to a line as river branch
 - -> local 1D coordinate along river -> chainage
- upstream/downstream connections -> river network
 - -> topological network structure
- cross section -> cut vertical to local 1D river longitudinal axis
 - -> 2D: local horizontal coordinate, global vertical coordinate
- structures: bridge, culvert, weir, pump stations, ...
 - -> location by 1D river coordinate (chainage)
 - -> relevant geometry of structure

Physics – Bed Resistance

- friction between river bed and water flow due to gravity in channels
- depends on bed type and slope
 - -> less friction for smooth concrete
 - -> typical friction for normal gravel
 - -> high friction for rough stones/rocks and vegetation
- part of Saint-Venant equation head loss (potential energy) due to friction along a channel

Physics – Bed Resistance

Gauckler–Manning–Strickler formula (empiric)

$$v = \frac{1}{n} R_h^{2/3} S^{1/2}$$

v cross-sectional average velocity

n Manning coefficient

R_h hydraulic radius (-> wetted area / wetted perimeter)

S slope of the hydraulic grade line, channel bed slope (constant water depth)

coefficients

Chezy coefficient $C = 1/n R^{1/6}$

Manning coefficient n

Strickler coefficient $K_s = 1/n$ (-> in Mike11 called Manning value M)

- mathematical relation between values
- North American / UK and European point of view

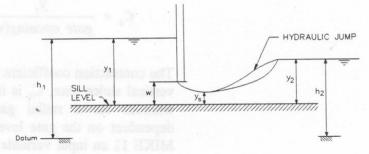
Physics – Bed Resistance

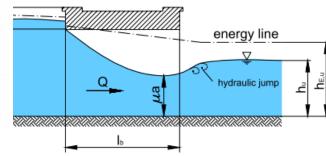
Manning values - examples

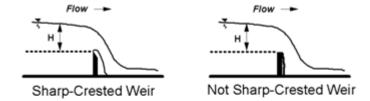
Minor Streams (top width at flood stage < 30 m)

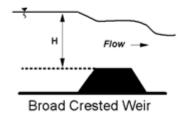
Streams on Plain	Manning n	Strickler K _s
1. Clean, straight, full stage, no rifts or deep pools	0.025-0.033	30-40
2. Same as above, but more stones and weeds	0.030-0.040	25-33
3. Clean, winding, some pools and shoals	0.033-0.045	22-30
4. Same as above, but some weeds and stones	0.035-0.050	20-29
5. Same as above, lower stages,	0.040-0.055	18-25
more ineffective slopes and sections		
6. Same as 4, but more stones	0.045-0.060	17-22
7. Sluggish reaches, weedy, deep pools	0.050-0.080	12-20
8. Very weedy reaches, deep pools, or floodways	0.075-0.150	07-13
with heavy stand of timber and underbrush		

25.11.2018 Introduction Mike11 FM/BTU 22


Structures


- weirs
- culverts
- control structures
- bridges
- pumps
- dams


25.11.2018


integration of empirical equations in the numerical scheme -> Q/h relationships, empiric parameters

example weir -> Poleni equation $Q = \frac{2}{3} \mu \sqrt{2g} B h^{\frac{3}{2}}$

Boundary Conditions

location: at the border / boundary of model

time: at any time within the simulation period

types of boundary conditions:

-> 1st type Dirichlet -> water level is given

-> 2nd type Neumann -> discharge is given

-> 3rd type Cauchy -> Q/h relationship: rating curve

water level depending discharge

values for boundary conditions

-> constant values

-> time series

additional application: external sources as lateral inflow

25.11.2018

Introduction Mike11

FM/BTU 24

Boundary Conditions for Rivers

- typical examples for upstream boundaries
 - -> constant discharge from a reservoir
 - -> discharge hydrograph for a specific event
- typical examples for downstream boundaries
 - -> constant water level, e.g. in a large receiving water body
 - -> time series of water level, e.g. tidal cycle
 - -> rating curve (Q/h), e.g. from a gauging station
- What do we need for lower part of the river Var?

Initial Conditions

- location: everywhere in the model
- time: for the begin of the simulation period
- methods to specify initial conditions
 - -> manual specification of local and global values
 - -> steady state calculation
 - -> result of another simulation: "hotstart"
- impact of initial conditions to results
- strategies to specify initial conditions

Simulation

time: simulation period, time steps

space: simulation grid points

numerics: scheme parameter, iteration parameter, ...

stability criteria

implicit/explicit schemes -> solver type

results: storage frequency,

type of physical state variables

location of physical state variables

Part 3

Theoretical Background Mike11

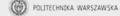
Simulation Abstraction Steps

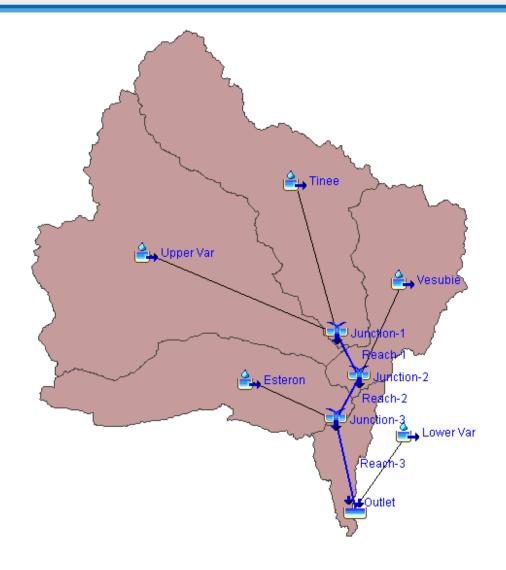
- reality
 abstraction by physical system using assumptions, simplifications
- physical system
 physical behavior described by physical laws and principles
- physical laws described by differential equations
- numerical method differential equations -> system of algebraic equations
- mathematical algorithm
 solving the system of algebraic equations

Reality

River Var

25.11.2018 Introduction Mike11



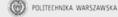


FM/BTU 30

Physical System

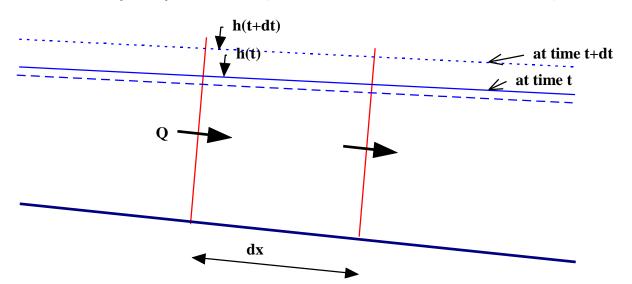
- river network
- cross sections
- flood plains
- structures

25.11.2018 Introduction Mike11 FM/BTU 31



Physical Laws

- **1D Saint-Venant Equations** simplification of the shallow water equations in 2D depth-integrated Navier-Stokes equations **Continuity Equation** (Conservation of Mass) **Momentum Equation** (Conservation of Momentum)
- assumptions
 - incompressible and homogeneous fluid
 - flow is mainly one-dimensional
 - bottom slope is small
 - small longitudinal variation of cross-sectional parameters
 - hydrostatic pressure distribution



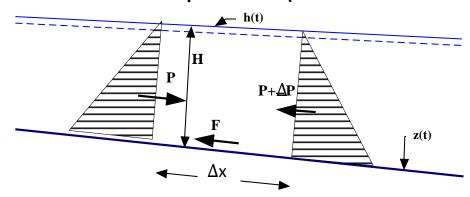
Physical Laws - 1D Saint-Venant Equations

Continuity Equation (Conservation of Mass)

$$\rho \cdot Q \cdot dt - \rho \cdot (Q + \frac{\partial Q}{\partial x} dx) dt = \rho \cdot dA \cdot dx = \rho \cdot \frac{\partial A}{\partial t} dx \cdot dt \qquad \frac{\partial Q}{\partial x} - B \cdot \frac{\partial h}{\partial t} = 0$$

increase of mass from t to $\Delta t =$

mass flux into control volume $(t->t+\Delta t)$ + mass flux out of control volume $(t->t+\Delta t)$



Physical Laws - 1D Saint-Venant Equations

Momentum Equation (Conservation of Momentum)

Momentum = Mass per unit length * velocity

Momentum Flux = Momentum * velocity

Pressure Force = Hydrostatic Pressure P

Friction Force = Force due to Bed Resistance

Gravity Force = Contribution in X-direction

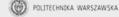
$$\frac{\Delta M}{\Delta t} = \frac{(M * U)}{\Delta x} + \frac{\Delta P}{\Delta x} - \frac{\Delta F_f}{\Delta x} + \frac{\Delta F_g}{\Delta x}$$

Momentum = Momentum Flux + Pressure - Friction + Gravity

increase of momentum $t \rightarrow t+\Delta t = momentum$ flux into control volume + sum of external forces

$$\frac{\partial Q}{\partial t} + \frac{\partial QV}{\partial x} + gA\frac{\partial H}{\partial x} + gAS_f + gA\frac{\partial Z}{\partial x} = 0$$

25.11.2018 Introduction Mike11 FM/BTU 34



Physical Laws - 1D Saint-Venant Equations

Momentum Equation (Conservation of Momentum)

$$\frac{\partial Q}{\partial t} + \frac{\partial QV}{\partial x} + gA \left(\frac{\partial h}{\partial x} + S_f \right) = 0$$

$$v = \frac{1}{n} R^{\frac{2}{3}} S_f^{\frac{1}{2}}$$

$$C = \frac{1}{n} R^{\frac{1}{6}}$$

$$v = \frac{1}{n} R^{\frac{2}{3}} S_f^{\frac{1}{2}}$$
 $C = \frac{1}{n} R^{\frac{1}{6}}$ $S_f = \frac{Q|Q|n^2}{R^{\frac{4}{3}}A^2} = \frac{Q|Q|}{C^2 R A^2}$

Manning equation Chezy/Manning -> rearranging for S_f

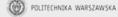
$$\frac{\partial Q}{\partial t} + \frac{\partial (Q_{\overline{A}}^{Q})}{\partial x} + gA \frac{\partial h}{\partial x} + g \frac{Q|Q|}{C^{2}RA} = 0$$

acceleration

local convective

pressure

friction



Physical Laws - 1D Saint-Venant Equations

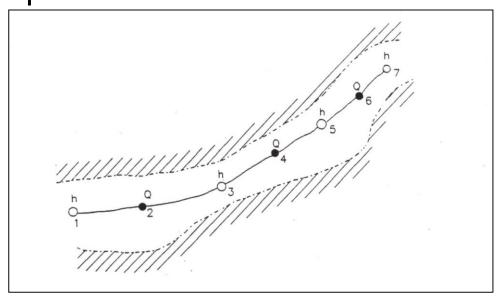
Continuity Equation (Conservation of Mass)

$$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = q_l$$
 $q_l = lateral inflow$

Momentum Equation (Conservation of Momentum)

$$\frac{\partial Q}{\partial t} + \frac{\partial (Q_{\overline{A}}^{Q})}{\partial x} + gA \frac{\partial h}{\partial x} + g \frac{Q|Q|}{C^{2}RA} = 0$$

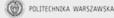
• two partial differential equations two unknowns - two coordinates

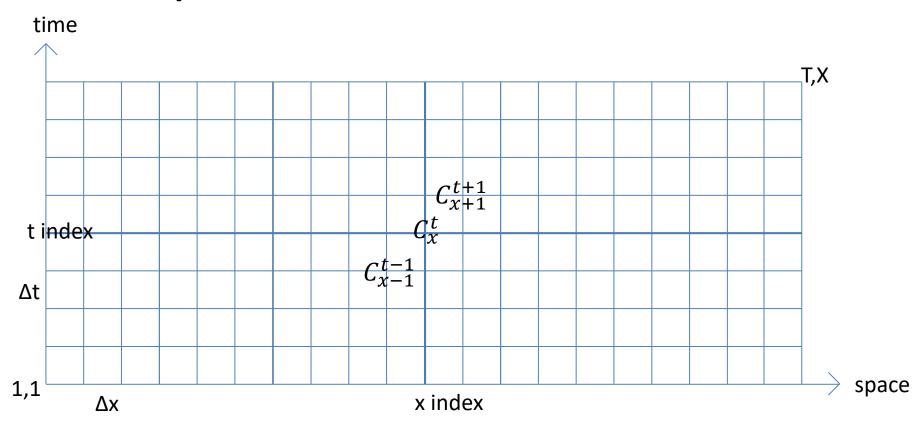


Numerical Methods

- Finite Difference Method implicit Abbott-Ionescu 6-point scheme
- two time levels three space levels

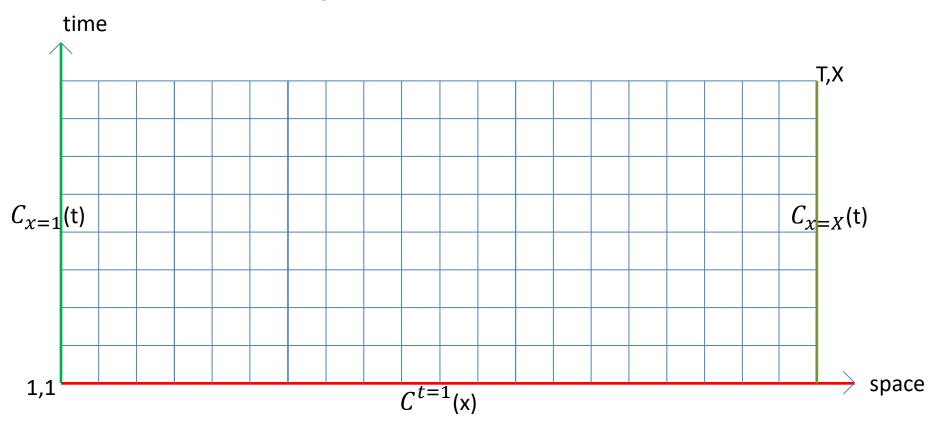
staggered grid alternate h, Q





Numerical Methods

Time and Space for one unknown variable C



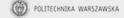
Numerical Methods

Initial and Boundary Conditions

25.11.2018

Introduction Mike11

FM/BTU 39



Numerical Methods

Finite Difference Method

Discretisation in Time

$$\frac{\partial C}{\partial t} \Rightarrow \frac{C_{\chi}^{t+1} - C_{\chi}^{t}}{\Delta t}$$

$$\frac{\partial C}{\partial t} \Rightarrow \frac{C_{\chi}^{t} - C_{\chi}^{t-1}}{\Delta t}$$

$$\frac{\partial C}{\partial t} \Rightarrow \frac{C_{\chi}^{t} - C_{\chi}^{t-1}}{\Delta t}$$

$$\frac{\partial C}{\partial t} \Rightarrow \frac{C_{\chi}^{t+1} - C_{\chi}^{t-1}}{2 \Delta t}$$

forward difference in time

backward difference in time

central difference in time

Numerical Methods

Finite Difference Method

Discretisation in Space

$$\frac{\partial C}{\partial x} \Rightarrow \frac{C_{x+1}^t - C_x^t}{\Delta x}$$

$$\frac{\partial C}{\partial x} \Rightarrow \frac{C_x^t - C_{x-1}^t}{\Delta x}$$

$$\frac{\partial C}{\partial x} \Rightarrow \frac{C_{x+1}^t - C_{x-1}^t}{\Delta x}$$

forward difference in space

backward difference in space

central difference in space

Numerical Methods

Crank-Nicolson method

linear superposition of difference on old and new time level superposition parameter $0 \leq \Theta \leq 1$ example central difference in space

$$\frac{\partial C}{\partial x} \Rightarrow \theta \frac{C_{x+1}^{t+1} - C_{x-1}^{t+1}}{2\Delta x} + (1 - \theta) \frac{C_{x+1}^{t} - C_{x-1}^{t}}{2\Delta x}$$

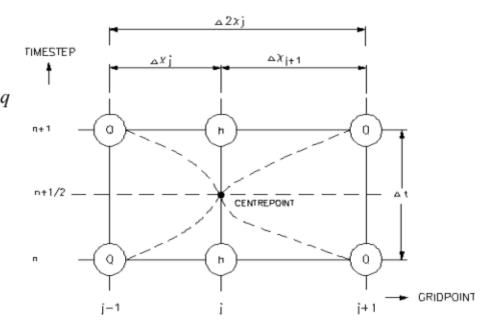
stability given for $\Theta \geq 0.5$ (Saint Venant equation) in Mike11: $\Theta = 0.5$

$$\frac{\partial C}{\partial x} \Rightarrow 0.5 \frac{c_{x+1}^{t+1} - c_{x-1}^{t+1}}{2\Delta x} + 0.5 \frac{c_{x+1}^{t} - c_{x-1}^{t}}{2\Delta x} = \frac{\frac{c_{x+1}^{t+1} + c_{x+1}^{t} - c_{x-1}^{t+1} + c_{x-1}^{t}}{2}}{2\Delta x}$$

Numerical Methods

Continuum Equation

$$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = q \qquad \frac{\partial A}{\partial t} = b_s \frac{\partial h}{\partial t} \qquad \frac{\partial Q}{\partial x} + b_s \frac{\partial h}{\partial t} = q$$

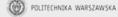

$$\frac{\partial Q}{\partial x} \approx \frac{(Q_{j+1}^{n+1} + Q_{j+1}^n) - (Q_{j-1}^{n+1} + Q_{j-1}^n)}{2}$$

$$\frac{\Delta 2x_j}{\Delta 2x_j}$$

$$\frac{\partial h}{\partial t} \approx \frac{(h_j^{n+1} - h_j^n)}{\Delta t}$$

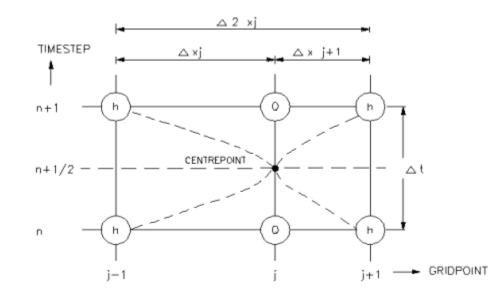
$$b_s = \frac{A_{o,j} + A_{o,j+1}}{\Delta 2x_i}$$

$$\alpha_{j}Q_{j-1}^{n+1} + \beta_{j}h_{j}^{n+1} + \gamma_{j}Q_{j+1}^{n+1} = \delta_{j}$$



Numerical Methods

Momentum Equation


$$\frac{\partial Q}{\partial t} + \frac{\partial \left(\alpha \frac{Q^2}{A}\right)}{\partial x} + gA \frac{\partial h}{\partial x} + \frac{gQ|Q|}{C^2 AR} = 0$$

$$\frac{\partial Q}{\partial t} \approx \frac{Q_j^{n+1} - Q_j^n}{\Delta t}$$

$$\frac{\partial \left(\alpha \frac{Q^2}{A}\right)}{\partial x} \approx \frac{\left[\alpha \frac{Q^2}{A}\right]_{j+1}^{n+\frac{1}{2}} - \left[\alpha \frac{Q^2}{A}\right]_{j-1}^{n+\frac{1}{2}}}{\Delta 2x_i}$$

$$\frac{\partial h}{\partial x} \approx \frac{\frac{(h_{j+1}^{n+1} + h_{j+1}^n)}{2} - \frac{(h_{j-1}^{n+1} + h_{j-1}^n)}{2}}{\Delta 2x_i}$$

$$\alpha_{j}h_{j-1}^{n+1} + \beta_{j}Q_{j}^{n+1} + \gamma_{j}h_{j+1}^{n+1} = \delta_{j}$$

$$\alpha_i = f(A)$$

$$\beta_j = f(Q_j^n, \Delta t, \Delta x, C, A, R)$$

$$\gamma_i = f(A)$$

$$\delta_{i} = f(A, \Delta x, \Delta t, \alpha, q, \nu, \theta, h_{i-1}^{n}, Q_{i-1}^{n+\frac{1}{2}}, Q_{i}^{n}, h_{i+1}^{n}, Q_{i+1}^{n+\frac{1}{2}})$$

25.11.2018 Introduction Mike11

FM/BTU 44

Mathematical Algorithm

equation system structure(one branch, no connection)

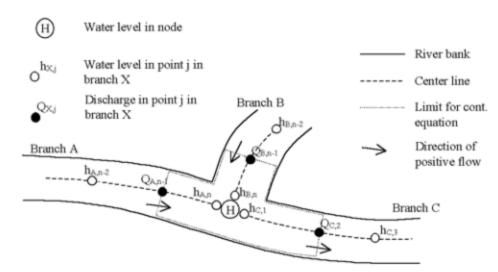
$$\alpha_{j}h_{j-1}^{n+1} + \beta_{j}Q_{j}^{n+1} + \gamma_{j}h_{j+1}^{n+1} = \delta_{j}$$

$$\alpha_j Q_{j-1}^{n+1} + \beta_j h_j^{n+1} + \gamma_j Q_{j+1}^{n+1} = \delta_j$$

Mathematical Algorithm

equation system transformation

$$\begin{bmatrix} a_1 & 1 & & & & b_1 & c_1 \\ a_2 & 1 & & & b_2 & c_2 \\ a_3 & 1 & & & b_3 & c_3 \\ a_4 & 1 & & b_4 & c_4 \\ a_5 & 1 & & b_5 & c_5 \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ \vdots & & & 1 & b_{n-2} & c_{n-2} \\ a_{n-1} & & & 1 & b_{n-1} & c_{n-1} \\ a_n & & & 1 & b_n & c_n \\ \end{bmatrix}$$



Mathematical Algorithm

- node point solution
 - -> branch network
- boundary equations
 - -> h known
 - -> Q known
 - -> Q/h relationship
- matrix bandwidth minimization
- Double Sweep algorithm

Part 4

MIKE11 Components

Mike11 File Structure (HD Simulation)

Simulation File

Network File

Crossection File

Boundary File

Hydrodynamics Parameter File

Time Series File

• Result File

*.sim11 file

*.nwk11 file

*.xns11 file

*.bnd11 file

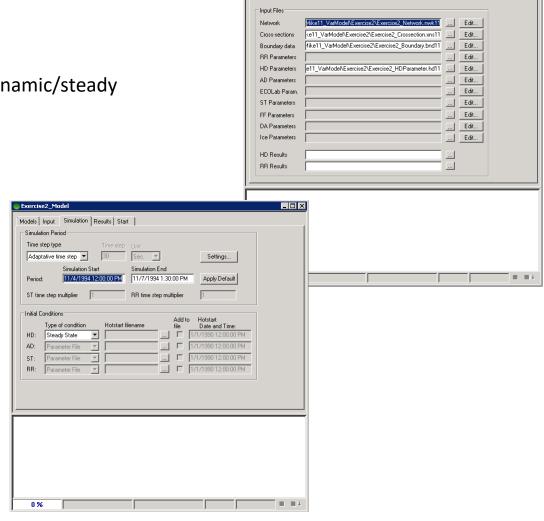
*.hd11 file

*.dfs0 file

*.res11 file (MikeView)

-> each file type do have a related editor tool within MikeZero

-> central core file is always the *.sim11 file (file to start modelling)

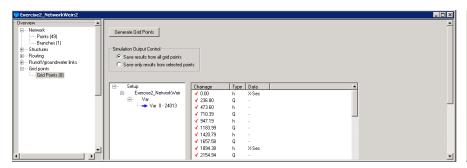


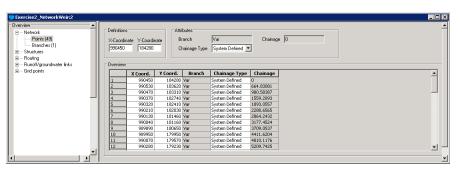
Simulation File

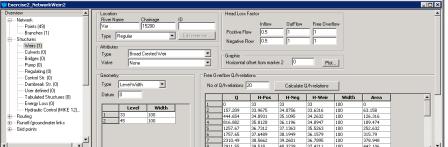
- simulation type/mode hydrodynamic/steady
- input files
- simulation data
 - time window
 - time step
 - initial conditions
- simulation results
 - result file, storage frequency
- simulation run control
 - warnings and errors

Exercise2 Model

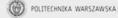
Models Input Simulation Results Start

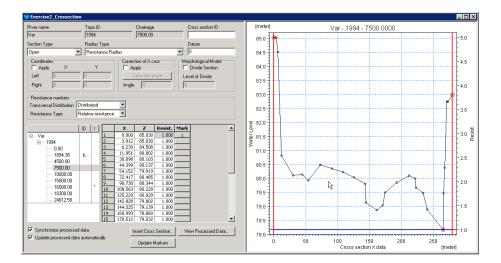


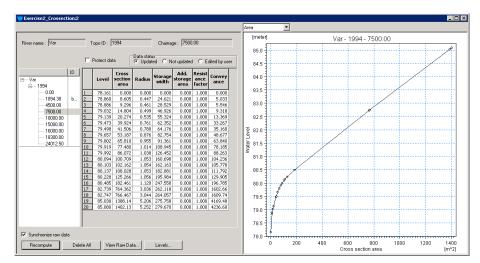



Network File

- river branch(s) geospatial location
 - branch name
 - topological id (e.g. year of measurement)
 - geospatial points (x-y system)
- control structure examples: weirs
- grid points
 - generated points for numerical simulation staggered grid for h and Q nodes (grid points)


() Fraemus I

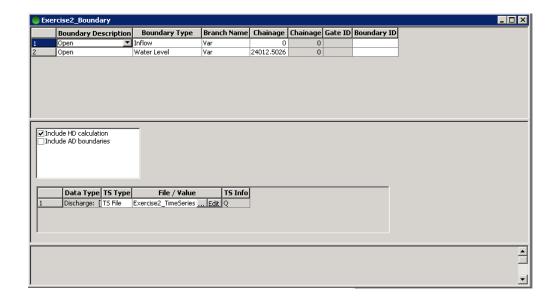




Crossection File

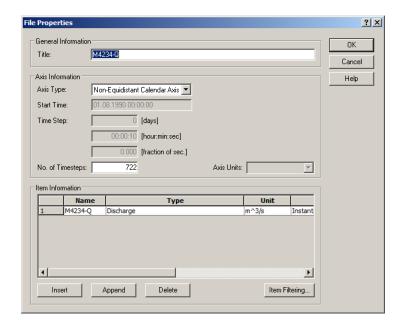
- crossection location
 - branch name
 - chainage
 - topological id (e.g. year of measurement)
- crossection points
 - profile coordinate (x)
 - vertical elevation (z)
- marker examples:
 - left levee bank
 - lowest point (bed)
 - right levee bank
- processed data
 - e.g. A/h relationship

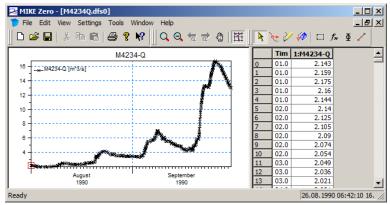
© Erasmus+



Boundary File

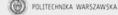
- boundary condition
 - type of boundary condition
 - branch name
 - chainage
- boundary condition values
 - constant value
 - time series item

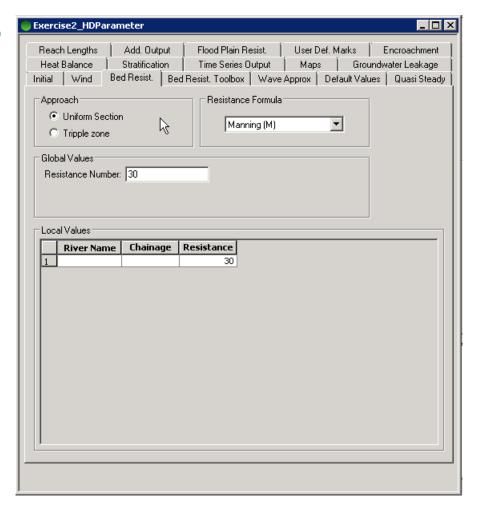




Time Series File

- type of time series
 - equidistant, non-equidistant
 - start time, time step,
 number of time steps
- items
 - item name
 - type of value, unit

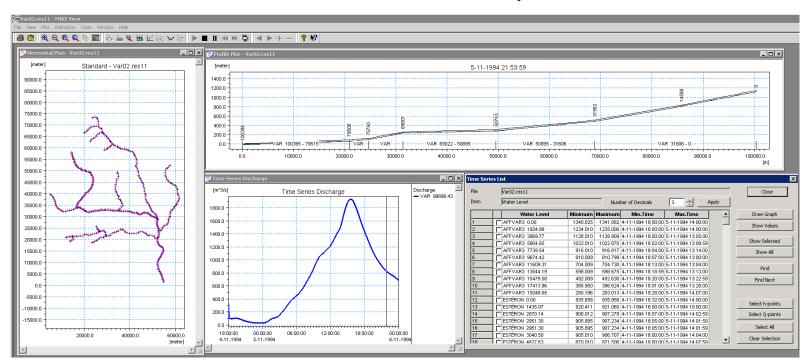




Hydrodynamic Parameter

- Bed Resistance
 - global or branch oriented
 - Manning (m), Strickler (M) or Chezy (C)
- Additional Output examples:
 - velocity
 - Froude number
 - mass error
- several other options/parameters

- ...



Result File

The results are stored in a file with the suffix res11.

MikeView is used to visualize and analyse the results of Mike11.

Part 5

MIKE11 Exercises

Mike11 Exercise

Exercise 1: Simple Academic Test Case

Set-up of a new model (see tutorial)

straight channel

5 km length

cross section width = 50 m, height = 10 m

slope: 0%

material: concrete

initial condition

horizontal water level 4 m, discharge 0 m/s

boundary condition:

upstream: water level time series 4 m with 6m peak

downstream: discharge = $0 \text{ m}^3/\text{s}$ (wall)

Mike11 Exercise

Exercise 2: Simplified River Model Case Study

Running a given model (see tutorial)

given Mike11 model files:

network Exercise2 Network.nwk11

cross sections Exercise2_Crossection.xns11

parameter file Exercise2_HDParameters.hd11

boundary conditions Exercise2_Boundary.bnd11

Exercise2 TimeSeries.dfs0

simulation model Exercise2 Model.sim11

boundary conditions

upstream: discharge time series

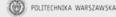
1) Q = 300 m**3/s

2) Q with synthetic flood peak wave

downstream: water level h = 0 (sea level)

initial conditions steady state calculation

roughness Strickler value of 30



Mike11 Exercise

Exercise 2: Simplified River Var Model Case Study

Simulation Task

- analyse the given river model for normal flow condition
- analyse the given river model for the 1994 flood event
- analyse the impact of the roughness parameter
- analyse the impact of a weir

