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ABSTRACT
In this work, a novel framework for the construction of Discontinuous Galerkin schemes using augmented Riemann
solvers for the resolution of the shallow water equations is proposed. The benefits of this family of solvers lie in the
exact preservation of the Rankine Hugoniot (RH) condition at cell interfaces at the discrete level, ensuring the preser-
vation of equilibrium solutions (i.e. the well-balanced property) without requiring extra corrections of the numerical
fluxes.
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1 INTRODUCTION

Many engineering and environmental problems that involve steady and transient free surface water flows can
be described by the Shallow Water Equations (SWE). High order methods are becoming increasingly popular
in shallow water flow modelling motivated by their high computational efficiency. In particular, Discontinuous
Galerkin (DG) schemes Reed et Hill (1973); Cockburn et Shu (1989) are very well suited for the resolution of
the SWE, due to their many advantages: high accuracy, inherent conservativeness, compactness, high parallel
efficiency, flexibility for hp-adaptivity and possibility of using arbitrary geometry and meshes.

When considering the SWE with bottom topography, numerical schemes must preserve a relevant equilibrium
state called quiescent equilibrium, also known as “lake at rest”, where the water surface elevation is constant.
Numerical schemes satisfying such equilibrium state are called well-balanced methods Bermudez et Vázquez-
Cendón (1994); J.M. Greenberg (1996); V. Caleffi (2015). In this work, the DG formulation is combined with
augmented Riemann solvers to design a well-balanced arbitrary order discretization of the SWE.

2 NUMERICAL METHOD

The x-split SWE can be expressed as Ut + Fx = S, where U = (h, hu, hv)T , F = (hu, hu2 + 0.5gh2, huv)T ,
S = (0,−ghzx, 0)T , with h the water depth, hu and hv the discharges, g the acceleration of gravity and z the bed
elevation.

The DG method is based on the approximation of the solution by a linear combination of basis functions
{φl}l=0,...,Nd

as follows U(x, t) ≈ Ui(x, t) =
∑Nd

l=0 Ûi,l(t)φl(x). This allows to express the updating scheme
for the unknown degrees of freedom as Ûi,k(t)
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)
, (1)

where F is the matrix of physical fluxes, F?,− stands for the numerical flux in the x-direction and S is source
term. Numerical fluxes are usually computed by means of the resolution of the Riemann Problem (RP) at cell
interfaces in order to obtain accurate numerical solutions. Augmented Riemann solvers were introduced in an
attempt to represent the effect of the source term in the solution of the RP and automatically fulfill RH conditions
Navas-Montilla et al. (2020).

Second and third order Discontinuous Galerkin (DG2 and DG3) schemes with Strong Stability Preserving third
order Runge-Kutta (SSPRK3) integrator will be compared with a first order Godunov’s scheme.
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3 NUMERICAL RESULTS

Three different cases are tested. First of all, Case 1 is an evaluation of the convergence rates of the well-
balanced DG3-SSPRK3 scheme with smooth topography. Table 1 shows its error norms and convergence rates.
Cases 2 and 3 are Riemann Problems, designed as a dam break the first one and as an equilibrium representing
an ideal shear layer (contact wave) the second one, whose initial conditions are provided in Table 2. The solution
for the water surface elevation of Case 2 is plotted in Figure 1a. It is observed that the intermediate states are
accurately predicted, as well as the location of the shock wave and rarefaction wave.

h hu

Meshes (Nj/Nj+1) L1(h) OL1 L∞(h) OL∞ L1(hu) OL1 L∞(hu) OL∞

160/320 4.17e-09 3.48 2.97e-08 3.54 1.86e-08 3.48 1.40e-07 3.571
320/640 4.72e-10 3.14 3.30e-09 3.17 2.11e-09 3.14 1.55e-08 3.17
640/1280 5.74e-11 3.03 4.00e-10 3.04 2.57e-10 3.03 1.88e-09 3.04
1280/2560 7.12e-12 3.01 4.93e-11 3.02 3.19e-11 3.01 2.33e-10 3.01

Table 1: Convergence rates for Case 1 for the water depth and discharge, h and hu, associated to the L1 and L∞ error norms.

Label hL hR huL huR hvL hvR zL zR T N
RP1 1.0 0.1614067989 0.0 0.0 1.0 0.1614067989 0.0 0.05 0.02 320
RP2 1.0 1.0 0.0 0.0 1.0 2.0 0.0 0.0 0.032 160

Table 2: Initial condition for Cases 2 and 3. Units in m, m2/s and s.

In Case 3, Figure 1b shows that the 1-st order scheme adds a large amount of numerical diffusion, which would
involve a strong mixing between the left and right regions in the context of the resolution of a shear layer. The
DG2-SSPRK3 scheme reproduces a sharper transition across the contact discontinuity. Its performance is much
better than the first order version of the augmented Riemann solver and even than other higher order schemes.
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(a) Case 2. Numerical solution for h + z.
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(b) Case 3. Numerical solution for hv.

Figure 1: Cases 2 and 3 are computed by the well-balanced first order Godunov’s scheme (green) and DG2-SSPRK3 (purple), compared
with the exact solution (black solid line), and the analytical solution in Case 3 (dashed line). Units are given in m and m/s.

4 CONCLUSIONS

It is herein evidenced that DG schemes are automatically well-balanced when using augmented solvers, pro-
vided: (i) the use of an exact quadrature rule for the surface and volume integrals and (ii) the reconstructed
data satisfy the discrete equilibrium. The numerical results evidence that the proposed scheme achieves the
prescribed convergence rates and preserves the equilibrium states of relevance with machine precision.

Our immediate goals are the limitation of shock oscillations and the correct resolution of dry/wet fronts. Also the
parallelization of the 2D scheme using CUDA/OpenACC to solve it in the GPU is within the next steps.
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