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ABSTRACT

A depth-averaged system for free surface flow based in non-hydrostatic pressure (NHP) assumptions is presented
and analyzed for the numerical simulation of open channel flows. This research analyzes the numerical behaviour of
the model when simulating both steady and unsteady for open channel flows. The NHP model is solved my means of
a one-dimensional explicit-implicit finite volume method. A well-balance scheme must be designed for these models
to solve some particular problems. The numerical results are validated with semi-analytical and experimental data.

Keywords: non-hydrostatic pressure, finite-volume, dispersive, steady, well-balanced.

1 INTRODUCTION

There is a wide range of geophysical flows that can be mathematically represented by the non-linear shallow
water 1D equations involving hydrostatic pressure assumptions. In this context, the use of non-hydrostatic
pressure (NHP) models have been restricted to coastal applications where vertical accelerations can not be
neglected and the extra computational time is justified. These applications are generally focused unsteady
wave propagation and the attentions has not been paid on problems where there is an steady state that must
be balanced. This work is focused on the resolution of a one-dimensional NHP model and its application to
analytical steady states, presenting the consequences of using one of the most common numerical strategies
to solve these NHP equations: the Pressure Correction Method Anderson (1995).

2 GOVERNING EQUATIONS AND NUMERICAL MODEL

The 1D system of equations can be written (see Bristeau et al. (2015)) as:

1 1 2
oh | Olhu) _ 0; O(hu) + = (hu2 + 29h2) - —gh% 2 (hap”h + Pnh o~ Zb));

ot Ox ’ ot Ox oxr 2 Ox Ox
Non-hydrostatic terms (1 )
ow ow  pun O(hu) 0 o

where h is water depth, u and w stand for depth-averaged velocity components in = and z directions, respectively,
and p,,, represents the non-hydrostatic pressure at the bottom. The non-hydrostatic pressure is fully represented
on the right hand side of the momentum equations in system 1 and is solved by means of a Pressure Correction
Method (PCM), also called fractional step procedure Stelling et Zijlema (2003). First, a finite-volume scheme is
used to explicitly solve the shallow water part of the system and get intermediate states, A* and hu*, assuming
pnr = 0 with an upwind finite-volume scheme Murillo et Garcia-Navarro (2010). The implicit PCM provides the
new p,,, distribution. Finally, this non-hydrostatic distribution is used to update the final values of the new state,
h"tland huntl,

3 RESULTS
3.1 Wave propagation over irregular topography

The NHP model has been used to reproduced experimental waves on an open channel of 31.7 m length (L)
that can be found in Beji et Battjes (1993). The Figure 1 shows the water depth distribution over time at probe 5
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along the channel. In the graph, a comparison between experimental data, a SWE model and the NHP model
can be seen and compared.

(a) (b)
Figure 1: Experimental layout scheme (a) and temporal evolution of water depth at point 5 (b) of the channel comparing
experimental data (brown), simulation results with a SW model (orange) and with the NHP model (blue).

3.2 Stationary quasi-analytical solution

A quasi-analytical solution of the system 1 can be found in Bristeau et al. (2015). The NHP model presents
numerical problems of spatial discharge conservation, as shown in Figure 2.
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Figure 2: Spatial distribution of flow variables in an steady state over irregular topography, z.

)

4 CONCLUSIONS

The application of the fractional step procedure to solve a NHP model is very effective and robust, and presents
accurate results when dealing with unsteady wave propagation, as can be seen in Fig. 1. However, the same
method applied to an steady case shows the necessity of an equilibrium analysis of the scheme, since the
numerical fluxes after the corrector step get unbalanced and the steady discharge is not able to remain spatially
constant.
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