
Concepts for performance improvements of shallow water flow simulations

Lennart Steffen*1, Finn Amann1, Reinhard Hinkelmann1

1Technische Universität Berlin, Chair of Water Resource Management and Modeling of Hydrosystems, Berlin, Germany

*Correspondance : lennart.steffen@wahyd.tu-berlin.de

ABSTRACT
Flow simulations with the depth-averaged shallow water equations are applicable to many naturally occurring surface
water flows, such as open channel flow or floods. Improving the performance of simulation software enables a
higher resolution, larger computational domain or more runs with different parameters within the same time frame,
or less time required to obtain results and lower energy consumption for the same simulation. To explore avenues
for performance improvements of shallow water flow simulations, an open-source C++ framework for explicit finite-
volume-method solvers was designed and a robust shallow water equations solver based on a previous in-house
development was implemented. First results show the expectable performance improvements from vectorisation of
cell-based calculations, and preliminary tests show measurable speedups from reordering edge flux computations
to reduce cache misses and locks between threads. Furthermore, a simple load rebalancing scheme for distributed
computations is introduced and two load criteria are compared.

Keywords: shallow water equations, finite volume method, high performance computing.

1 INTRODUCTION

The depth-averaged shallow water equations (SWE) are a simplification of the Navier-Stokes equations and
are applicable to a wide range of surface water flows, such as open channel flow and floods. Numerical SWE
solvers are an important tool for modelling such flows. Improving the performance of such solvers allows for
higher resolutions, longer simulated time frames, larger computational domains or more runs with different
test parameters for the same computational cost, or shorter computation times and energy costs for the same
simulation. Especially in time-critical applications, such as when the decision making process for a flood event
requires modelling of different scenarios, time savings can be greatly beneficial.

At the Chair of Water Resource Management and Modeling of Hydrosystems at TU Berlin, a robust solver for
the SWEs has been developed since 2005, as part of a Java framework called the Hydroinformatics Modeling
System (hms) (Simons et al., 2013).

To make full use of high-performance compute libraries as well as distributed computing with MPI, a new C++
framework named hms++ is being created. It provides an expressive interface to create explicit solvers for the
finite volume method (FVM) on arbitrary meshes, but with a focus on structured ones (both rectangular and
non-rectangular). The well-tested SWE solver from hms has been reimplemented in this new framework, to
investigate two main approaches for performance improvements:

Firstly, the code implementing the solver logic is restructured to improve general metrics such as cache utili-
sation, vectorisation, branch prediction and parallelism (specifically wait times for locks or atomic operations).
Results obtained here are likely applicable to any (explicit) FVM solver. Secondly, SWE simulations with both
wet and dry regions can cause load imbalances between threads and/or nodes, because some calculations
can be skipped for dry cells. Therefore, to maximise utilisation, dynamic intra- and inter-node load balancing is
another key area of investigation.

©YEAR, IAHR. Used with permission ISSN (Online) - ISSN (Print) - ISSN (USB)

mailto:


2 GENERAL PERFORMANCE IMPROVEMENTS FOR FVM SOLVER FRAMEWORK

By using existing and mature linear algebra libraries, non-interdependent computations on contiguous data
can be optimised with relative ease. The library used here, called eigen, provides expression templates for both
matrix and coefficient-wise array operations, which are internally resolved to vectorisable loops. For calculations
that only require single-cell-based data, using such expressions typically results in significant speedups over
per-cell function calls. This was observed in the calculations of the maximum stable time step, source terms
and new state variables. After a rewrite of these steps to allow vectorisation, they take up only 10–15% of the
computation time per time step, as opposed to about 50% before. Overall computation time was roughly halved.

However, the flux calculation of FVM solvers requires data of at least two cells per flux over one edge, and
can therefore not easily be expressed as a set of matrix or array operations. Given that this step now takes up
85–90% of the computation time, it is the focus of further optimisation efforts.

For structured meshes, including non-rectangular ones, the concept is, to investigate different orders in which
edges are traversed and the corresponding fluxes are calculated. These traversal methods define the order in
which cell-based data is accessed. This can be used to improve data locality and thus cache usage, as well
as minimising wait times for parallel write access to shared memory. Preliminary investigations indicate that
removing atomic write accesses may reduce flux calculation times by around 20%, while traversing edges in
blocks can reduce flux calculations by another 10%, likely due to higher retention of relevant data in the cache.
However, results are still subject to change, as the relevant code sections are still being worked on.

3 DRY CELL EXPLOITATION AND DYNAMIC LOAD BALANCING

Ginting et Mundani (2019) found dry cells to require only about half the computational effort of wet cells in SWE
simulations. However, depending on both implementation and the simulated case, dry cells may not lead to less
computation time overall: While they reduce the load of the corresponding thread, this may simply lead to higher
idle times. Therefore, static and dynamic thread scheduling are compared and wet/dry aware thread spawning
methods (i.e. skipping large dry regions altogether) are explored.

For distributed memory computations, dynamic load balancing requires mesh and data redistribution. Here, a
simple and fast two-stage scheme for rebalancing structured meshes is introduced, which is portrayed in Fig.
1. Furthermore, two criteria for load imbalance are compared: average processor load per node is used as
an aggregate criterion, while wet/dry flags per cell are used as a more highly resolved criterion. First results
indicate that rebalancing quality, measured by the sum of load deficits over all nodes, is similar between both
criteria, while the computational cost of the aggregate criterion is much lower. Nevertheless, these results are
still preliminary and are only meant as a proof of concept.

Load
factor

0.2

1.0

0.6
0.4

0.8

=> =>

Figure 1: Two-stage scheme for rebalancing structured meshes. First, the mesh is divided into bands with similar loads,
then these bands are divided again to form partitions with similar loads.

References

Ginting B. M., Mundani R.-P. (2019, 5). Parallel flood simulations for wet–dry problems using dynamic load balancing concept. Journal of
Computing in Civil Engineering 33(3), 04019013. doi:10.1061/(asce)cp.1943-5487.0000823.

Simons F., Busse T., Hou J., Özgen I., Hinkelmann R. (2013). A model for overland flow and associated processes within the hydroin-
formatics modelling system. Journal of Hydroinformatics, 375–391. URL: https://iwaponline.com/jh/article/16/2/375/3479/
A-model-for-overland-flow-and-associated-processes, doi:https://doi.org/10.2166/hydro.2013.173.

©YEAR, IAHR. Used with permission ISSN (Online) - ISSN (Print) - ISSN (USB)

http://dx.doi.org/10.1061/(asce)cp.1943-5487.0000823
https://iwaponline.com/jh/article/16/2/375/3479/A-model-for-overland-flow-and-associated-processes
https://iwaponline.com/jh/article/16/2/375/3479/A-model-for-overland-flow-and-associated-processes
http://dx.doi.org/https://doi.org/10.2166/hydro.2013.173

	1 Introduction
	2 General performance improvements for FVM solver framework
	3 Dry cell exploitation and dynamic load balancing

