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ABSTRACT 

 

In developing countries, 35% of treated water is lost before reaching households. Thus, more water needs to be abstracted, 

energy is wasted, and water supply is interrupted. Therefore, detecting more and faster pipe bursts reduces the physical losses. 

Aquasuite© BURST Alert is a data-driven heuristic model, easy to implement once it does not require the installation of new 

sensors at the distribution system. It uses as inputs (i) the prediction of flow and pressure from another model; (ii) measurements 

from WDS. The main objective of this research was to investigate deeper which variables influence the computation of a burst 

alarm, and then determine their best setup. Statistical tests have been performed to analyze the parameters at an offline 

environment in Python. Results showed that adding weather data to BURST Alert would not improve significantly the software 

detection; however, they indicated the influence of DVG’s average flow. 
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1 INTRODUCTION 

Projections indicate that by 2050, almost 6 billion people will experience severe water scarcity. Therefore, the usage of water 

needs to be efficient and its losses minimized. Leakages in water distribution systems (WDS) increases the water stress, 

since a higher volume will have to be abstracted to meet the demand. The pipe burst is the event for which a leak starts; 

hence detecting bursts is primary to avoid the development of leaks in WDS’s. 

Aquasuite© BURST Alert is a data-driven heuristic model, easy to implement once it does not require the installation of new 

sensors at the distribution system (Bakker et al., 2014). The program developed by Royal HaskoningDHV uses the prediction 

of flow and pressure and it compares with real-time data. If the deviation is too high (e.g., the flow measured is higher than 

the threshold), a burst or leak most likely occurred, triggering an alarm to the water company. However, improvements are 

still needed to decrease the number of false alarms whilst detecting the maximum possible number of bursts. This research 

aimed to find the best parameters values for enhancing the performance of Aquasuite BURST Alert software. With the right 

parameter’s setup, the underlying algorithm software will be able to detect extra burst events and without increasing too 

much the number of false alarms. The specific objectives are (i) to determine the performance of the software during 2019 

at sub-supply areas (DVGs) of the water company Oasen; (ii) to investigate the influence of weather variables at burst 

occurrence. 

 
2 METHODOLOGY 

BURST Alert was reproduced in Python code, generating thresholds for flow and pressure and alarms. Using the output of 
the code, logistic regressions were done at R software to model dichotomous outcome of a burst event: 0 = no burst, 1 = 
burst registered by the water company. The outcome tested if the burst event (dependent variable) could be explained by a 
combination of independent variables: temperature, humidity, diameter, DVG’s average flow and cause of burst 
(spontaneous or due to consequential damage). 

  
3 RESULTS & DISCUSSION 

The code in Python reproduces the functionality of BURST Alert, generating flow/pressure thresholds and triggering an 
alarm. However, it presents some limitations. Firstly, to generate the thresholds, 90 days of data are required, so they were 
calculated only from the 4th month onwards. Also, the thresholds generated by the code are slightly different from the 
historian data, which also implies at different alarm triggering. It was expected that the error increased during the night, since 
at this period the flow is mainly composed by leakage flow (Soldevila et al., 2016; Salguero, Cobacho and Pardo, 2019). 
However, the error has a high variation both during the day and at night. 

The water company Oasen provided an Excel file with all the service orders realized during 2019. This data is considered 
as the real burst data; thus, it was used for validating the bursts triggered by the Python code and for evaluating the 
performance of BURST Alert in 2019, at each DVG. Two methods were used to evaluate the performance of BURST Alert 
at Oasen’s DVGs in 2019. The first , method-1, considered a burst as a single event; a true alarm is the one triggered inside 
the range of initial - end time of Oasen and it is visible on flow trends (Table 1). 
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Table 1. Performance evaluation of BURST Alert by method-1. 

\ Average 
flow 
(m³/h) 

Bursts 
reported 
by Oasen 

Bursts 
detected 
by BURST 
Alert 

Detection 
probability 
(%) 

Number 
of false 
alarms 

Total 
number 
of alarms 

Days 
without 
burst 

Rate of 
false 
alarms 
(%) 

Alblasserdam 320 9 3 33.3 12 15 340 3.5 

Alblasserwaard en 
Vijfheerenlanden 

1250 93 0 0.0 10 10 148 6.8 

Alphen 500 31 4 12.9 65 69 297 21.9 

Gouda 1900 126 2 1.6 12 14 159 7.6 

Hazerswoude 525 59 5 8.5 12 17 149 8.0 

Lekkerkerk 339 32 7 21.9 69 76 214 32.2 

Nieuwkoop 300 31 8 25.8 32 40 270 11.8 

Ridderkerk 323 15 3 20.0 30 33 330 9.1 

Zwijndrecht 438 28 6 21.4 8 14 318 2.5 

whole Oasen 5895 424 38 16.2 250 288 236 11.5  
Total Total Total Average Total Total Average Average 

 

By analyzing Table 1, BURST Alert had a better performance at DVGs with average flows < 500 m³/h. On average, the 
software has a low DP and RF. The second method, namely method-2, was an exploratory analysis, where all the 
observations (288 datapoints/day) are considered. Both true positive and true negative events are considered correct events. 
This method demonstrates that the software triggered less alarms than expected (average of 99% of correct answers), thus 
having a high precision at the moments without bursts. The software was also compared to other detection methods (Kim 
et al., 2016; Romano, Kapelan and Savić, 2012; Mounce, Mounce and Boxall, 2011). BURST Alert has a lower DP, but the 
best RF amongst them. This means that the software has a low sensitivity to burst events, but a high precision. In addition, 
this study has a much wider sample with 424 real-life bursts, being majority of low flow, thus hard to detect. As other studies 
were carried different areas and burst events, a direct comparison might be misleading. 

Daily measurements for temperature and humidity variables were retrieved from the Koninklijk Nederlands Meteorologisch 
Instituut website, for the period of 2019. Logistic regressions were done with two bases: (i) all the observations, (ii) only 
bursts. At first, all the variables (Tavg, Tmax, Tmin, deltaT, Uavg, Umax, Umin, deltaU, diameter, DVG’s average flow, cause 
of burst) were included in the model one by one, and a stepwise was done to find the best model. For the complete base, 
the best adjustment had an Akaike information criterion (AIC) of 305, and it was using average humidity, average 
temperature, diameter and cause of leakage. However, the effects were small (small estimates), and no statistical 
significance was found (p-value>0.05). For the event base, the best fit model was using only diameter (AIC = 94), but no 
significant effect on burst was found. The second-best model (AIC = 1150) indicated a significant effect on the DVGs 
Alblasserwaard en Vijfheerenlanden, Gouda, Hazerswoude and Nieuwkoop. Thus, the bigger the DVG the higher is the 
burst occurrence. 

 
4 CONCLUSIONS 

The research aimed to improve the detection of bursts by the software BURST Alert. Firstly, the software reproduced it in 
Python. Then, the performance of the software at 9 DVGs in The Netherlands was evaluated by two methods: (i) considering 
burst as single event, (ii) and considering the true negative observations. The choice of method leads to different results: 
DP=16.2%, RF=11.5% (low sensitivity, medium precision) versus 99% of right observations (low sensitivity, high precision). 
The logistic regressions showed that DVG’s size has a significant influence at burst occurrence, while the weather variables 
were not significant. Future research should use weather data with more observations (e.g., T and U hourly measurements). 
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