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ABSTRACT5

A depth-averaged system for free surface flow based in non-hydrostatic pressure (NHP) assumptions is presented6

and analyzed for the numerical simulation of open channel flows. This research analyzes the numerical behaviour of7

the model when simulating both steady and unsteady for open channel flows. The NHP model is solved my means of8

a one-dimensional explicit-implicit finite volume method. A well-balance scheme must be designed for these models9

to solve some particular problems. The numerical results are validated with semi-analytical and experimental data.10
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1 INTRODUCTION12

There is a wide range of geophysical flows that can be mathematically represented by the non-linear shallow13

water 1D equations involving hydrostatic pressure assumptions. In this context, the use of non-hydrostatic14

pressure (NHP) models have been restricted to coastal applications where vertical accelerations can not be15

neglected and the extra computational time is justified. These applications are generally focused unsteady16

wave propagation and the attentions has not been paid on problems where there is an steady state that must17

be balanced. This work is focused on the resolution of a one-dimensional NHP model and its application to18

analytical steady states, presenting the consequences of using one of the most common numerical strategies19

to solve these NHP equations: the Pressure Correction Method Anderson (1995).20

2 GOVERNING EQUATIONS AND NUMERICAL MODEL21

The 1D system of equations can be written (see Bristeau et al. (2015)) as:22
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where h is water depth, u and w stand for depth-averaged velocity components in x and z directions, respectively,23

and pnh represents the non-hydrostatic pressure at the bottom. The non-hydrostatic pressure is fully represented24

on the right hand side of the momentum equations in system 1 and is solved by means of a Pressure Correction25

Method (PCM), also called fractional step procedure Stelling et Zijlema (2003). First, a finite-volume scheme is26

used to explicitly solve the shallow water part of the system and get intermediate states, h∗ and hu∗, assuming27

pnh = 0 with an upwind finite-volume scheme Murillo et Garcia-Navarro (2010). The implicit PCM provides the28

new pnh distribution. Finally, this non-hydrostatic distribution is used to update the final values of the new state,29

hn+1 and hun+1.30

3 RESULTS31

3.1 Wave propagation over irregular topography32

The NHP model has been used to reproduced experimental waves on an open channel of 31.7 m length (L)33

that can be found in Beji et Battjes (1993). The Figure 1 shows the water depth distribution over time at probe 534
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along the channel. In the graph, a comparison between experimental data, a SWE model and the NHP model35

can be seen and compared.36

(a) (b)

Figure 1: Experimental layout scheme (a) and temporal evolution of water depth at point 5 (b) of the channel comparing
experimental data (brown), simulation results with a SW model (orange) and with the NHP model (blue).

3.2 Stationary quasi-analytical solution37

A quasi-analytical solution of the system 1 can be found in Bristeau et al. (2015). The NHP model presents38

numerical problems of spatial discharge conservation, as shown in Figure 2.

Figure 2: Spatial distribution of flow variables in an steady state over irregular topography, z.

39

4 CONCLUSIONS40

The application of the fractional step procedure to solve a NHP model is very effective and robust, and presents41

accurate results when dealing with unsteady wave propagation, as can be seen in Fig. 1. However, the same42

method applied to an steady case shows the necessity of an equilibrium analysis of the scheme, since the43

numerical fluxes after the corrector step get unbalanced and the steady discharge is not able to remain spatially44

constant.45
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