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1. Void fractions distributions During the fall, the amount of air that enters into the
1.00 ‘comabs x jet tends to increase; it modifies the cross-section
profile and the jet thickness.

Air entrainment generates energy
dissipation in turbulent free-falling
jets, in where self-aeration
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oreeeee redliee e vslaay 2 0.75 For Z/h < -11.0, the inner jet core showed non-
P he et thick yh' aerated water (C = 0); for Z/h > -11.0, the air
increment the jet thickness. This O 0.50 entrainment reaches the center of the jet (minimum

experimental study presents an o void fractions between 0.08 and 0.25).

analysis of some air-water A}  Conductivity . . .
oroperties in rectangular free-falling \% " probe 0.25 v The maximum velocities of each cross section are

Measurement +3X¥, O - such as their correspondent gravitational velocities;

_ " % O . .
Jets. TWO SpeFmC ﬂC_)WS e direction  *\} s o] however, the velocity tends to rapidly reduce
considered with falling distances up | ) Jet thickness, B 0.00 A outside of the non-aerated core.

to 1.2 m. A conductivity phase- B/(B,y 12) Although the falling distance is relatively small (up

detecthn probe EE usgd for A I 1Z/h = -5.0, g = 0.048 m3/s/m to 1.20 m), a slight velocity reduction effect has
measuring the void fraction B RN ©~Z/h=-11.0, 9 =0.072 m3/s/m been observed in the core of the jets.

distributions, while a Pitot-Prandtl , A LR\ ~Z/h=-14.9, q = 0.048 m¥s/m
tube was used for obtaining the =21 Vv | - 2/h=-16.5,q=0.072 ms/m | Bi b I oqara h

velocity profiles. The jet thickness Ry, L — N Figure 3: Void fraction distribution for ditferent g p y
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The results show the evolution of S = T ) 2. Velocity profiles (2020). Experimental characterization of air

the inner jet core, with aeration £ il | R 0.0 entrainment in rectangular free falling jets. Water,

increment, and a small reduction of | | he-10\: ¥ 12,1773, . ,
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Figure 4: Velocity profiles for different
dimensionless falling distances.

1st IAHR Young Professionals Congress (17-18 November 2020)



mailto:patricio.Ortega@epn.edu.ec

