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Figure 1: Case 2.

DG schemes are automatically well-balanced when using
augmented solvers, provided:
• an exact quadrature rule for the surface and volume integrals,
• and the discrete equilibrium satisfied by the reconstructed data.
The proposed scheme achieves the prescribed convergence rates
and preserves the equilibrium states of relevance with machine
precision.
Immediate goals:
• limitation of shock oscillations,
• correct resolution of dry/wet fronts
• parallelization of the 2D scheme using CUDA/OpenACC to solve

it in the GPU.

Abstract In this work, a novel framework for the construction of Discontinuous Galerkin (DG) schemes using augmented Riemann solvers for the resolution of the Shallow Water

Equations (SWE) is proposed. The benefits of this family of solvers lie in the exact preservation of the Rankine Hugoniot (RH) condition at cell interfaces at the discrete level, ensuring

the preservation of equilibrium solutions (i.e. the well-balanced property) without requiring extra corrections of the numerical fluxes.
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The DG method is based on the approximation of the solution by a

linear combination of basis functions ɸ𝑙 𝑙=0,…,𝑁𝑑 as follows
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Cases 2 and 3 are Riemann Problems, designed as a dam break the
first one and as an equilibrium representing an ideal shear layer
(contact wave) the second one.

3. Numerical results
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The DG2-SSPRK3 scheme

reproduces a sharper

transition across the contact

discontinuity. Its performance

is much better than the first

order version of the

augmented Riemann solver

and even than other higher

order schemes.

Label 𝒉𝑳 𝒉𝑹 𝒉𝒖𝑳 𝒉𝒖𝑹 𝒉𝒗𝑳 𝒉𝒗𝑹 𝒛𝑳 𝒛𝑹 T N

RP1 1.0 0.1614 0.0 0.0 1.0 0.1614 0.0 0.05 0.02 320

RP2 1.0 1.0 0.0 0.0 1.0 2.0 0.0 0.0 0.032 160

where 𝑭 is the matrix of physical fluxes, ℱ∗,− stands for the

numerical flux in the 𝑥-direction and 𝑺 is source term.

𝒉 (water depth) 𝒉𝒖 (discharge)

Meshes ( Τ𝑵𝒋 𝑵𝒋+𝟏) 𝑳𝟏(𝒉) 𝑂𝐿1 𝑳∞(𝒉) 𝑂𝐿∞ 𝑳𝟏(𝒉) 𝑂𝐿1 𝑳∞(𝒉) 𝑂𝐿∞

160/320 4.17 ∙ 10−09 3.48 2.97 ∙ 10−08 3.54 1.86 ∙ 10−08 3.48 1.40 ∙ 10−07 3.57

320/640 4.72 ∙ 10−10 3.14 3.30 ∙ 10−09 3.17 2.11 ∙ 10−09 3.14 1.55 ∙ 10−08 3.17

640/1280 5.74 ∙ 10−11 3.03 4.00 ∙ 10−10 3.04 2.57 ∙ 10−10 3.03 1.88 ∙ 10−09 3.04

1280/2560 7.12 ∙ 10−12 3.01 4.93 ∙ 10−11 3.01 3.19 ∙ 10−11 3.01 2.33 ∙ 10−10 3.01

Table 1: Convergence rates for Case 1.

Table 2: Initial condition for Cases 2 and 3. Units in 𝑚, 𝑚2/𝑠 and 𝑠.

1. Introduction

In Case 3, Figure 2 shows that the 1-st order scheme adds a large 

amount of numerical diffusion, which would involve a strong mixing 

between the left and right regions in the context of the resolution of a 

shear layer. 

Figure 2: Case 3.

Both cases are computed by the well-balanced first order
Godunov's scheme (green line) and DG2-SSPRK3 (purple line),
with exact solution (black solid line), including in Case 3 the
analytical solution (dashed line).

The solution for the water

surface elevation of Case

2 is plotted in Figure 1.

The intermediate states

are accurately predicted,

as well as the location of

the shock wave and

rarefaction wave.

Case 1 is an evaluation of the convergence rates of the well-
balanced DG3-SSPRK3 scheme with smooth topography. Table 1
shows its error norms and convergence rates.

The1D, 𝑥-split SWE can be expressed as
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with ℎ the water depth, ℎ𝑢 and ℎ𝑣 the discharges, 𝑔 the 

acceleration of gravity and 𝑧 the bed elevation.
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