
1st IAHR Young Professionals Congress (17-18 November 2020)

Flow simulations with the depth-

averaged shallow water equations

are applicable to many naturally

occurring surface water flows, such

as open channel flow or floods.

Improving the performance of

simulation software allows larger

simulations or lower time and

energy requirements. To explore

avenues for performance

improvements, an open-source C++

framework for explicit finite-volume-

method solvers was designed and a

robust shallow water equations

solver was implemented. First

results show significant speedups

from vectorisation of cell-based

calculations, and preliminary tests

show measurable speedups from

reordering edge flux computations to

reduce cache misses and locks

between threads. Furthermore, a

simple load rebalancing scheme for

distributed computations is

introduced and two load criteria are

compared.

Keywords: shallow water

equations, finite volume method,

high performance computing.

Methods Conclusions

Concepts for performance improvements

of shallow water flow simulations
Lennart Steffen1*, Finn Amann1, Reinhard Hinkelmann1

1Technische Universität Berlin, Chair of Water Resource Management and Modeling of Hydrosystems, Berlin, Germany

*Correspondence YP: lennart.steffen@wahyd.tu-berlin.de

Different approaches for performance

improvements are investigated:

• vectorisation of cell-based

computations

• reordering flux calculations (see

Fig. 1) to improve data locality and to

reduce locks between threads

• dynamic load balancing: simple

two-stage algorithm, aggregate

criteria (e.g. processor load), cell-

based criteria (wet/dry flags)

Vectorisation of cell-based computations:
• comparably simple to implement using free

numerics libraries (here: eigen3)
• yields large speedups, time share of respective

steps reduced from ~50% to 10-15%

Reordering flux calculations:
• yields measurable, but lower speedups
• interfaces between threads cause significant

wait times when using atomic write accesses

Dynamic load balancing:
• similar partitioning quality between aggregate

and highly resolved cell-based criteria
• aggregate criterion much cheaper

Vectorisation of cell-based computations:

comparably simple and yields good results

Reordering flux calculations:

• main focus for optimisation going forward

• useful instrument to increase data locality

• yields promising first results

• removing locks between threads is avenue

for further optimisation

Dynamic load balancing: usage of aggregate

criterion superior to cell-based one, due to

lower computational costs and similar results.

Abstract Results

wahyd.tu-berlin.de

Figure 1: Edge traversal strategies. Left: Example mesh with cell (bold) and edge indices (italic). Middle: ordered traversal. Right:

row-wise traversal. Memory access follows top-to-bottom axis. Row-wise traversal shows better locality of cell data.

Cells→

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ed
ges→

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Cells→

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ed
ges→

8

0

9

1

10

11

2

12

3

13

14

4

15

5

16

6

7

mailto:correspondingauthor@email.com

