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Abstract A depth-averaged system for free surface flow based in non-hydrostatic pressure (NHP) assumptions is presented and analyzed for the numerical simulation of open channel 

flows when simulating both steady and unsteady. The NHP model is solved by means of a one-dimensional explicit-implicit finite volume method. A well-balanced scheme must be 

designed for these models to solve some numerical problems. Quasi-analytical and experimental results validate the NHP model. 
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A quasi-analytical solution 
of the system can be 
found in Bristeau et al. 
(2015). The fractional step 
procedure presents 
numerical problems of 
spatial discharge 
conservation:

The application of the fractional step procedure to solve a 
NHP model is very effective and robust, and presents 
accurate results when dealing with unsteady wave 
propagation, as can be seen in Fig. 1. However, the same 
method applied to a steady case shows the necessity of 
an equilibrium analysis of the scheme, since the 
numerical fluxes after the corrector step get unbalanced 
and the steady discharge is not able to remain spatially 
constant.

Results

Fig. 2: Spatial distribution of flow variables in a steady state over irregular topography, z.

The hydrostatic part of the system 

is solved my means of a first order 

FV numerical scheme (Murillo and 

Garcia-Navarro (2010)), obtaining 

h*, (hu)* and w*, assuming pnh = 0

The implicit Pressure Correction 

Method provides the new pnh

distribution.

Finally, this non-hydrostatic 

distribution is used to update the 

final values of the new state, hn+1

and (hu)n+1.
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The system is solved in two steps by means of the 

Fractional step procedure (Stelling and Zijlema (2003))

Steady quasi-analytical solution

The same model 
reproduces properly 
experimental waves 
measured on an open 
channel Beji and Battjes
(1993)

Fig. 1: Experimental layout scheme (a) and temporal evolution of water depth at point 5 (b) of the channel comparing experimental data 

(brown), simulation results with a SW model (orange) and with the NHP model (blue).
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