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Numerical Approximation Methods --
Groundwater 2D -- Finite Difference Method
1. Mathematical Description

Differential Equation

The confined groundwater problem can be described by the set of differential equations
for flow balance in the model domain and at the boundary of the model domain.

(1--1) ∂
∂x1
K11 ∂h

∂x1
 + ∂

∂x2
K22 ∂h

∂x2
+ w= Ss

∂h
∂t

Kii hydraulic conductivity along xi coordinate i = 1,2

h hydraulic head

w volumetric flux (source/sink term)

Ss specific storage of the soil material (porous material)

x1,x2 Cartesian coordinates

t time coordinate

For 2D problems with constant hydraulic conductivity in each coordinate direction the
equation can be simplified to:

(1--2) K11
∂2h
∂x21
+ K22

∂2h
∂x22
+ w= Ss

∂h
∂t

For steady groundwater flow the equation can be simplified to:

(1--3) K11
∂2h
∂x21
+ K22

∂2h
∂x22
+ w= 0

The groundwater flux in the two coordinate directions is defined by:

(1--4) q= nTq= n1n2
Tq1q2

n normal vector at boundary

(1--5) q1= − K11
∂h
∂x1 flux vector component

(1--6) q2= − K22
∂h
∂x2 flux vector component

Boundary conditions:

(1--7) h= h0 Dirichlet boundary condition, given head

(1--8) q= qB Neumann boundary condition, given flux

(1--9) q= f(h) Cauchy boundary condition, flux depends on head
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2. Finite Difference Method FDM

2.1 Spatial Approximation of the domain

The model domain is subdivided into equidistant sections and related nodes. A simple
solution is a regular rectangle grid parallel to the coordinate axis.

x1
i=1 i i=Ii --1 i +1

L1

x2

L2

j=1

j--1

j

j+1

j=J

x1

x2

Pi,j

PI,J

PI,1

P1,J

P1,1

Figure 1: Spatial approximation by regular rectangle grid

I number of nodes in direction 1

J number of nodes in direction 2

x1i x1 coordinate for nodes with first index i

x2j x2 coordinate for nodes with second index j

Pi,j node i,j with coordinates (x1i, x2j)

L1 length of the model domain in direction 1 L1 = I x1
L2 length of the model domain in direction 2 L2 = J x2
N number of nodes N = I*J

The physical state variable h(x1,x2) is described by discrete functions. At each node the
related function value hi,j is specified.



Numerical ModellingV 15.10.15

Page 17

2.2 Approximation of the Differential Equation

The groundwater 2D differential equation is a Laplace’s equation. To solve this equation
the order of an approximation polynomial for h(x1,x2) has to be two asminimum in each
coordinate direction.

(2--1) ∂2h
∂x21
= 1
Δx21

STzzehe1

(2--2) ∂2h
∂x22
= 1
Δx22

STzzehe2

(2--3) szze=⎪
⎡
⎣

1
− 2

1
⎪
⎤
⎦

shape function 2nd derivation vector

(2--4) he1=⎪⎪
⎡

⎣

hi− 1,j

hi,j
hi+1,j

⎪⎪
⎤

⎦
head value vector at node i,j in direction 1

(2--5) he2=⎪⎪
⎡

⎣

hi,j− 1

hi,j
hi,j+1

⎪⎪
⎤

⎦
head value vector at node i,j in direction 2

(2--6) − K11
Δx21

sTzzehe1 −
K22
Δx22

sTzzehe2= wi,j

approximated diff. equation at node n

(2--7) wi,j= w(x1i,x2j) flux load at node n,m

The final equation for the differential equation at node n,m is:

(2--8)
K11
Δx21

(− hi− 1,j+ 2hi,j − hi+1,j)+

K22
Δx22

(− hi,j− 1+ 2hi,j − hi,j+1)= wi,j

ii --1 i +1

j--1

j

j+1 a1=
K11
Δx21

a2=
K22
Δx22

− a1 − a1

− a2

− a2

2(a1+ a2)

Figure 2: 2D Finite Difference Scheme
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2.3 Approximation of the Boundary Conditions

Two boundary conditions types are considered for the 2D groundwater flow
approximation: given head values and given flux values.

Given head values can be directly set to the related node values

(2--9) h(x1= x1i,x2= x2j)= hi,j
The groundwater flux is specified by a differential equation, which can be approximated
by a linear approach (see lecture noted geometrical modelling -- shape functions). The
model domain has a rectangle shape with four kind of normal vectors:

x1

x2

L2

L1

n= 10

n= 01

 0
− 1 = n

− 1
0 = n East

West

South

North

Figure 3: Model Domain Boundary Normal Vector

Depending on the boundary normal / model domain side four approximation equations
are used:

(2--10) qB=
− K11
Δx1

(hI,j − hI− 1,j) East

(2--11) qB=
− K22
Δx2

(hi,J − hi,J− 1) North

(2--12) qB=
− K11
Δx1

(h2,j − h1,j) West

(2--13) qB=
− K22
Δx2

(hi,2 − hi,1) South
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2.4 Equation system

The groundwater flow system in Figure 2 is approximated at each inner node by
equation (2--8). The given boundary conditions at the boundary nodes by the related
equations (2--10) to (2--13). This leads to N = I*J equations with N unknown values (hi,j).

The N equations can be written in a matrix--vector notation. The nodes and related
physical state variables will be ordered in a sequence using the rule:

(2--14) n= j * I+ i index of node i,j in the matrix--vector system

The unknown head values are summarized in the vector h ordered by the node index
n. The knownexternal flux valuesw(x1,x2) are set in the load vectorw at the node related
position. The coefficients related to the unknown head values at each node are
considered in a system matrix.

(2--15) Kh= w

(2--16) h=⎪⎪⎪

⎡

⎣

h1
hn
hN

⎪⎪⎪

⎤

⎦
(unknown) head vector

(2--17) w=
⎪⎪⎪⎪

⎡

⎣


hn
wn
qBn

⎪⎪⎪⎪

⎤

⎦
(known) external load vector

Figure 4 shows as example the node index of a system with 4 nodes in each direction.

x1

x2

EastWest

South

North

1 2 43

5 6 87

9 10 11 12

13 14 15 16

Figure 4: Node index n for regular grid 4 x 4

Node 6,7,10 and 11 are inner nodes.

Nodes 1--4 are the nodes at the South boundary with given head values (2--9).

Nodes 4,8,12,16 are the nodes at the East boundary with given flux values (2--10).

Nodes 13--16 are the nodes at the North boundary with given flux values (2--11).

Nodes 1,5,9,13 are the nodes at the West boundary with given flux values (2--12).
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This leads to a band matrix with a bandwidth of I (node number in direction1).

1 1 h1 h1
2 1 h2 h2
3 1 h3 h3
4 1 h4 h4
5 h --h h5 q5
6 --c --b a --b --c h6 w6
7 --c --b a --b --c h7 w7
8 h --h h8 q8
9 h --h h9 q9
10 --c --b a --b --c h10 w10
11 --c --b a --b --c h11 w11
12 h --h h12 q12
13 v --v h13 q13
14 v --v h14 q14
15 v --v h15 q15
16 v --v h16 q16

Figure 5: System Matrix 4x4 Node Approximation

a= 2
K11
Δx21
+ 2

K22
Δx22

see (2--8)

b=
K11
Δx21

see (2--8)

c=
K22
Δx22

see (2--8)

h=
K11
Δx1

see (2--10),(2--12)

v=
K22
Δx2

see (2--11),(2--13)
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3. Unsteady Flow

The basic equation of unsteady groundwater flow in 2D is (see (1--2)):

(3--1) K11
∂2h
∂x21
+ K22

∂2h
∂x22
= Ss

∂h
∂t − w(t)

The left hand side of the equation has been spatial approximated using the finite
differencemethod,which leads to the linear equation system (2--15). The right hand side
of the equation contains the time depending part to define unsteady flow.

3.1 Time Approximation

The time approximation is usually done by introducing time steps with equidistant time
increment within the desired time window.

time

t=1 t=2 t t = Tt --1 t +1

Δt0 T
Figure 6: 1D time approximation

3.2 Time Depending Physical State Variables

Thephysical behaviour is described by relationships of discrete physical state variables.
Time depending physical behaviour such as unsteady flow leads to time depending
physical state variables. They are modelled in a discrete way by related values for each
time step. In groundwater 2D the head variable is time depending. The spatial
approximation leads towards the head (space) vector (2--16). This head vector is
specified for each time step for unsteady flow:

(3--2) ht=⎪⎪⎪

⎡

⎣

h1
hn
hN

⎪⎪⎪

⎤

⎦

t

=
⎪⎪⎪⎪

⎡

⎣

ht1
htn
htN

⎪⎪⎪⎪

⎤

⎦

=
⎪⎪⎪⎪⎪

⎡

⎣

ht1,1
hti,j

htI,J

⎪⎪⎪⎪⎪

⎤

⎦

head vector time step t

(3--3) htn head value at node n for time step t

All other time depending physical state variables and boundary condition values are
modelled in the same way by time step related values marked wit a sup index t for time
step t.
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3.3 Numerical Approximation

Equation (3--1) as two--dimensional diffusion equation contains separated derivation on
space and time. The derivation on space (2nd order) can be expressed by equation
(2--1). Example in one direction:

(3--4) ∂2h
∂x2=

1
Δx21

STzzehe=
hi− 1 − 2hi+ hi+1

Δx2

For a time depending modelling this equation can be used on each time step:

(3--5) ∂2h
∂x2 |t=

ht
n− 1

− 2htn+ ht
n+1

Δx2

The 1st order derivation of the head variable on time in equation (3--1) can be
approximated by

(3--6)
∂hn
∂t =

ht+1n − htn
Δt

(forward difference)

(3--7)
∂hn
∂t =

ht+1n − ht− 1
n

2Δt
(central difference)

(3--8)
∂hn
∂t =

htn − ht− 1
n

Δt
(backward difference)

These basic derivation equations can be used for the numerical approximation of the
general 2D diffusion equation.

(3--9) ∂h
∂t − a1

∂2h
∂x21

− a2
∂2h
∂x22
= b(t)

a1=
K11
Ss

, a2=
K22
Ss

, b(t)= w(t)
Ss

Combinations of different time step levels for spatial derivatives and different 1st order
time derivates lead to several different numerical schemes.
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3.3.1 Explicit Schemes

Explicit schemes are using a time and space approximation which leads to equations,
in which only one unknown state variable appears. These equations can be used to
calculate the unknown values without solving an equation system.

FTCS Scheme (forward time, central space)

The FTCS scheme is an explicit scheme using equation (3--6) for time derivation and
equation (3--5) for space derivation. This leads to:

(3--10)
ht+1
i,j

− ht
i,j

Δt
+

a1
− ht

i− 1,j
+ 2ht

i,j
− ht

i+1,j

Δx21
+

a2
− ht

i,j− 1
+ 2ht

i,j
− ht

i,j+1

Δx22
= bt

When all head values of time level t are known, the head value at node i,j for time step
t+1 can be explicitly calculated:

(3--11) ht+1i,j = (1 − 2s1 − 2s2)h
t
i,j+

s1h
t
i− 1,j+ s1h

t
i+1,j+ s2h

t
i,j− 1+ s2h

t
i,j+1+ Δtb

t

s1= a1
Δt
Δx21

s2= a2
Δt
Δx22

This scheme has a truncation error of O(Δt,Δx21,Δx
2
2) and a stability condition:

(3--12) s1+ s2 ≦ 0.5
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3.3.2 Implicit Scheme

Implicit schemes are using a time and space approximations which links several
unknown state variables in a linear equation. A set of such equations leads to a linear
equation system, which has to be solved.

Similar to the FTCS scheme the discretisation of the spatial derivations can be done on
the time level t+1. This leads to an implicit scheme with the equation:

(3--13) − hti,j= (− 1 − 2s1 − 2s2)h
t+1
i,j +

s1h
t+1
i− 1,j+ s1h

t+1
i+1,j+ s2h

t+1
i,j− 1+ s2h

t+1
i,j+1+ Δtb

t+1

This schemehasa truncation error of 0(Δt,Δx21,Δx
2
2) and is unconditionally stable.

However, for each time step a linear equation system has to be solved.

Several other implicit schemes are described in the literature. Example is the
Crank--Nicolson Scheme using an average of the spatial derivations in time level t and
time level t+1.

(3--14) bt=
ht+1
i,j

− ht
i,j

Δt
+

1
2a1⎪
⎧
⎩
ht
i− 1,j

+ 2ht
i,j

− ht
i+1,j

Δx21
+

ht+1
i− 1,j

+ 2ht+1
i,j

− ht+1
i+1,j

Δx21
⎪
⎫
⎭

1
2a2⎪
⎧
⎩
ht
i,j− 1

+ 2ht
i,j

− ht
i,j+1

Δx22
+

ht+1
i,j− 1

+ 2ht+1
i,j

− ht+1
i,j+1

Δx22
⎪
⎫
⎭

Advantage of this scheme is the truncation error of O(Δt2,Δx21,Δx
2
2)
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3.4 Boundary Conditions

The numerical approximation of the boundary conditions for unsteady flow is similar for
steady flow. The given external head and flux values could be steadyor timedepending.

Given head values can be directly set to the related node values.

(3--15) h(x1= x1i,x2= x2j,t= Δt t)= hti,j
As described in 2.3 four types of groundwater flux boundary equations can be
introduced in respect to the four borders of the rectangular model domain and the
related normal vectors:

(3--16) qtB=
− K11
Δx1

(htI,j − htI− 1,j) East

(3--17) qtB=
− K22
Δx2

(hti,J − hti,J− 1) North

(3--18) qtB=
− K11
Δx1

(ht2,j − ht1,j) West

(3--19) qtB=
− K22
Δx2

(hti,2 − hti,1) South

These equations can be used for the implicit scheme.
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Flux Boundary Conditions for Explicit Schemes

The described equations for flux boundary conditions are not suitable for explicit
schemes. The equations contain two state variables on the same time level. Explicit
schemes require one unknown state variable on the new time level and several known
state variables on other “older” time levels. Another problem is the truncation error of
the space approximation O(Δx1,Δx2), which is lower as the truncation error of the
equation for the interior nodes (such as (3--11)).

This problem can be avoided by using a central difference with a virtual node outside
the model domain. Equation (3--20) shows this for the western boundary:

(3--20) qtB=
− K11
2Δx1

(ht2,j − ht0,j) West

This can be rearranged for the head value outside the model domain:

(3--21)
2Δx1
K11

qtB+ ht2,j= ht0,j West

The state value of the nodeoutside themodel domain canbeeliminated using an interior
equation such as (3--11) for node 1,j:

(3--22) ht+11,j = (1 − 2s1 − 2s2)h
t
1,j+ West

s1h
t
0,j+ s1h

t
2,j+ s2h

t
1,j− 1+ s2h

t
1,j+1

The combination of equation (3--21) and (3--22) leads to an equation for the unknown
head value at node 1,j for time step t+1 depending on known head values of time step
t. This equation has the same truncation error as the equation for the interior nodes.

(3--23) ht+11,j = (1 − 2s1 − 2s2)h
t
1,j+ West

s1(
2Δx1
K11

qtB+ ht2,j)+ s1h
t
2,j+ s2h

t
1,j− 1+ s2h

t
1,j+1
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Similar equations can be set up for all four boundaries of the rectangular model domain.

Central difference:

(3--24) qtB=
− K11
2Δx1

(htI+1,j − htI− 1,j) East

(3--25) qtB=
− K22
2Δx2

(hti,J+1 − hti,J− 1) North

(3--26) qtB=
− K11
2Δx1

(ht2,j − ht0,j) West

(3--27) qtB=
− K22
2Δx2

(hti,2 − hti,0) South

Head value outside domain:

(3--28) − 2Δx1
K11

qtB+ htI− 1,j= htI+1,j East

(3--29) − 2Δx2
K22

qtB+ hti,J− 1= hti,J+1 North

(3--30)
2Δx1
K11

qtB+ ht2,j= ht0,j West

(3--31)
2Δx2
K22

qtB+ hti,2= hti,0 South

Differential Equation

(3--32) ht+1I,j = (1 − 2s1 − 2s2)h
t
I,j+ East

s1h
t
I− 1,j+ s1h

t
I+1,j+ s2h

t
I,j− 1+ s2h

t
I,j+1

(3--33) ht+1i,J = (1 − 2s1 − 2s2)h
t
i,J+ North

s1h
t
i− 1,J+ s1h

t
i+1,J+ s2h

t
i,J− 1+ s2h

t
i,J+1

(3--34) ht+11,j = (1 − 2s1 − 2s2)h
t
1,j+ West

s1h
t
0,j+ s1h

t
2,j+ s2h

t
1,j− 1+ s2h

t
1,j+1

(3--35) ht+1i,1 = (1 − 2s1 − 2s2)h
t
i,1+ South

s1h
t
i− 1,1+ s1h

t
i+1,1+ s2h

t
i,0+ s2h

t
i,2
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Final equations:

(3--36) ht+1I,j = (1 − 2s1 − 2s2)h
t
I,j+ East

s1h
t
I− 1,j+ s1(−

2Δx1
K11

qtB+ htI− 1,j)+

s2h
t
I,j− 1+ s2h

t
I,j+1

(3--37) ht+1i,J = (1 − 2s1 − 2s2)h
t
i,J+ North

s1h
t
i− 1,J+ s1h

t
i+1,J+

s2h
t
i,J− 1+ s2(−

2Δx2
K22

qtB+ hti,J− 1)

(3--38) ht+1i,1 = (1 − 2s1 − 2s2)h
t
i,1+ West

s1h
t
i− 1,1+ s1h

t
i+1,1+

s2(
2Δx2
K22

qtB+ hti,2)+ s2h
t
i,2

(3--39) ht+11,j = (1 − 2s1 − 2s2)h
t
1,j+ South

s1(
2Δx1
K11

qtB+ ht2,j)+ s1h
t
2,j+

s2h
t
1,j− 1+ s2h

t
1,j+1
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3.5 Initial Conditions

The initial condition problem of unsteady groundwater flow requires a complete set of
known values for all physical state variables, solving the specified differential equations.

(3--40) h(x1= x1i,x2= x2j,t= 1)= h1i,j

Usually these values can be specified by three types of methods:

 Setting up a simple physical state by physical insight

 Steady Flow Simulation

 Hotstart

The first version to specify initial conditions is using a simple physical state in the model
domain which can be specified by physical insight without any simulations. Example for
groundwater flow would be a system with constant head values at all boundaries and
within the model domain. Disadvantage of this method are often constant physical
states at the start of the simulation, which did not represent the initial conditions in
nature. Themodel might require longer simulation over time until the impact of the initial
conditions has been reduced efficiently.

Second option is the use of the steady flow simulation to generate a complete set of
values for a valid physical state in the model domain. This allows specifying suitable but
flexible boundary conditions and sink/source terms for the initial state and might reduce
the non--physical impact of the initial conditions to unsteady flow situations during the
simulation.

Third option is to use the result of a former unsteady simulation run as initial condition
for a new time depending simulation. This can be used to (re)start/change a simulation
on different time steps of a behaviour history.



EuroAquae Lecture Notes

Page 30

4. Adaptive Grids for Unsteady Flow

Chapter 3. introduced the theoretical background for the numerical simulation of
unsteady 2D groundwater flow (2D diffusion equation) using the finite difference
method. The spatial approximation described in 2.1 is done by a regular uniform
rectangular grid. The grid size is defined by the required minimum grid size to discretise
the physical state variable in all part of the model domain. A local effect (e.g. large
gradient of a shock wave), which requires a small grid size will lead to a small grid size
in thewhole domain. Thiswill increase the number of nodesand related unknownvalues
as well as computational resources.

Adaptive grids can be used to avoid the impact of local effects to the grid structure in
the whole model domain. Key idea is to use in all model domains always a grid size
suitable for the local requirements. Parts of the model domain with smooth changes of
the physical state variables can be determined by a larger grid size. Sub domains with
stronger changes of the physical state variables will be discretised by small grid size.

Example for such adaptive grids is the quad--tree based quadrilateral grid. A simple
example for such grid is shown in Figure 7.

Figure 7: Example Quadrilateral Grid with local Refinement

Details on grid modelling for such adaptive grids are described in the related lecture
notes. The application of such adaptive grid leads to three extension of the described
methods:

 criteria for the level of local refinement

 scaling of physical state variables

 adaptation of the numerical scheme for “hanging” nodes

These three topics are touched briefly.
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4.1 Refinement Criteria

Adaptive grids allow a local refinement. The level of refinement has to be defined by a
combination of refinement criteria. Typical criteria are:

 numerical criteria

 physical state variable approximation

Numerical criteria are derived from the applied numerical scheme. Physical state
variable approximation criteria are based on the “quality” of the applied approximation.
Two simple examples for refinement criteria in unsteady 2D groundwater flow FDM are
given below.

4.1.1 Numerical Criteria

Examples for numerical criteria are stability conditions. The FTCS scheme has a
stability criteria defined in equation (3--12):

(4--1) a1
Δt
Δx21

+ a2
Δt
Δx22

≦ 0.5

For a predefined time step and equal spatial increments in both directions, the stability
criteria can be expressed by:

(4--2) 2(a1+ a2)Δt ≦ Δx2

This equation defines a maximum limit for the refinement to guarantee stability.

4.1.2 Criteria for physical state variable approximation

The grid size has an impact on the quality of the approximation of the physical state
variables. For groundwater 2D the physical state variable h(x1,x2) is expressed by a
discrete approximation by element with quadratic shape functions. A simple check of
the quality of the spatial approximation is the comparison of the gradient left and right
(up and down) of a node based on a linear interpolation approach. Physically
interpretation is the comparison of flux related values. The left / right or up /down
gradients for the nodes i,j can be calculated by a forward and a backward difference;

(4--3) gR=
∂hi,j
∂x |R=

hi+1,j − hi,j
Δx

(forward difference)

(4--4) gL=
∂hi,j
∂x |L=

hi,j − hi− 1,j

Δx
(backward difference)

The two values can be compared against a relative or an absolute limits.

(4--5) |gL − gR|> Á1 absolute limit

(4--6) |gL − gR|> Á2 max(|gL|,|gR|) relative limit

If the change of gradient is not “smooth” enough, the grid will be adapted by refinement.
Another option to compare gradient values is the central difference.

(4--7) gC=
∂hi,j
∂x |C=

hi+1,j − hi− 1,j

2Δx
(central difference)
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4.2 Scaling

Unsteady flow simulation requires known values for the “old” time step t to determine
the “new” values for time step t+1. In case of an adaptive grid application, the number
and location of nodes change between the two time steps. In case of refinement, new
nodes are added, in case of coarseness some nodes are not any more considered.

The physical state variables are linked to nodes. Due to the grid adaptation, the related
physical state variables have to be adapted to the new grid approximation level. In case
of grid refinement this is called down scaling, in case of grid coarseness, this is called
up scaling. Some simple methods for the unsteady FDM 2D groundwater flow example
are described below.

4.2.1 Downscaling

Grid refinement leads to new nodes. For the new nodes related physical state variables
values has to be determined. One simplemethod is an interpolation of the physical state
variables at the newnodes of the new, lower quad--tree level based on the physical state
variables at the nodes of the upper quad--tree level. This strategy can be applied on
each level of adaptive grids.

=>
Interpolation

N4

N3
O4

O2O1

O3

N2

N1

N5

Figure 8: Interpolation for Refinement

Oi nodes on the upper quad--tree level with known values

Ni nodes on the lower quad--tree level with unknown values

The interpolation can be performed using the shape function approach described in the
related lecture notes. For the inner Node N5 a 2D linear approach can be used using
all four nodes Oi. The four centre nodes on the edges of the 2D element are handled
with a 1D linear approach using the two edge related Oi nodes. This guaranties the
continuity of the interpolation result with an interpolation in the related neighbourhood
element on the same grid element.

(4--8) f(N1)= 0.5(f(O1)+ f(O2))

(4--9) f(N2)= 0.5(f(O2)+ f(O3))

(4--10) f(N3)= 0.5(f(O3)+ f(O4))

(4--11) f(N4)= 0.5(f(O1)+ f(O4))

(4--12) f(N5)= 0.25(f(O1)+ f(O2)+ f(O3)+ f(O4))
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4.2.2 Upscaling

Grid coarsement leads to a loosing of nodes and related physical state variables values.
The remaining nodes do have physical state variables. A simple solution for grid
coarseness is to use the physical state variables of the lower quad--tree level
approximation directly as physical state variables of the upper quad--tree level. In this
case the physical state variables of the lost nodes in the lower quad--tree level are
ignored and do not have an impact for the upscaling solution.

This can be improved by integration methods. Key idea is to define integral values as
conservation criteria, which have to be the same value on the upper and lower
quad--tree grid level.

=>
Integration

O4

O2O1

O3

N4

N3

N2

N1

N5

Figure 9: Integration for Coarsement

For each lost node of the lower quad--tree level a correction term for the remaining
nodes on the upper level can be derived. Example is the correction term for the inner
node N5. Basic equation could be the integral over the 2D element of the physical state
variable, which should be the same for the lower level and upper level approximation:

(4--13) I= 
Ae

a(O  N)dA= 
Ae

a(O)dA

As an example this approach will be demonstrated for a 1D element with three nodes:

(4--14) I= 
Le

h(O  N)dx= 
Le

h(O)dx

(4--15) 1
2(ho1

+ ho2
)Δx − 1

6(ho1
+ 4hN1

+ ho2
)Δx= 0

The length of the 1D element can be eliminated. Both nodes o1 and o2 get the same
weighting for the correction term due to the elimination node n1. This leads to:

(4--16) 1
2(ho1

+ ho2
+ 2Δh) − 1

6(ho1
+ 4hN1

+ ho2
)= 0

ho1
= ho1

+ Δh ho2
= ho2

+ Δh
The correction term can be determined by:

(4--17) Δh= − 1
4(ho1

+ ho2
)+ 1

12(ho1
+ 4hN1

+ ho2
)

(4--18) Δh= 1
3 hN1

− 1
6(ho1

+ ho2
)
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The principle of using integral equations to develop upscaling methods can be applied
for any kind of integral to consider conservative variables. Typical examples are mass
balance or energy balance integral equations. For groundwater flow the mass balance
would be expressed by flux terms using 1st order derivations of the head variable.
Energy terms would be proportional to h2 terms.

Using a simple linear approach the correction terms can be expressed by:

(4--19) Δf(O1− 4)= f(N5) − 0.25 
i=1,4

f(Oi)

The information of nodes, which are eliminated due to coarseness, is lost for the next
time step. Depending on the reason / criteria for the grid adaptation, this can be partial
compensated by integration methods.
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4.3 Hanging Node

The developed numerical schemes are using a regular space approximation for the
discretisation of the 1st and 2nd order derivations. In case of an adaptive grid the grid
size in the neighbourhood might be finer or coarser. The numerical scheme has to be
adapted to these grid size changes.

a b

c d

i,j i+1,ji--1,j

Figure 10: Hanging Node

Figure 10 shows a grid cell with the nodes a, b, c , d on the quad--tree level q. The left
hand side cell is one quad--tree level lower q+1. The node i,j is on the border edge of
these both cells and member of the node set of quad--tree level q+1 but not of level q.
The spatial 2nd derivation in direction 1 in a regular grid is defined at node i,j in general
by:

(4--20) ∂2h
∂x21
=

hi− 1,j − 2hi,j+ hi+1,j
Δx21

This equation has to be adapted for adaptive grids. Quad--tree based adaptive grids
leads to so--called hanging nodes, when the neighbourhood has a higher quad--tree
level and related coarser spatial approximation. In the example of Figure 10 node i,j is
a hanging node on the level q+1, The right hand side node i--1,j ismissing, as the related
grid cell is on the level q and the related centre node is not existing. The missing head
value hi--1,j at this node has to be expressed by the interpolation values in the related
coarser grid element. This leads to an equation with head values on existing nodes.

(4--21) ∂2h
∂x21
=

hi− 1,j − 2hi,j+ hi+1,j
Δx2

hi− 1,j=
1
4(ha+ hb+ hc+ hd)

In case of a finer grid in one of the both neighbourhood grid elements the related head
value at the equidistant node can be used. However, information on a finer grid level are
ignored in this way. This information could be added by correction terms if suitable.
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i,j i+1,ji--1,j

d

a c

b

Figure 11: Finer Grid Element

(4--22) ∂2h
∂x21
=

hi− 1,j − 2hi,j+ hi+1,j
Δx2

Example for a correction term is the weighted average value of the four nodes on the
lower level at the neighbourhood edges. Using the weighting value g = 0 is the equation
without correction term.

(4--23) hi+1,j= (1 − g)hi+1,j+ g14(ha+ hb+ hc+ hd)


