Numerical Simulation - Free Surface Flow

River Modelling

17.10.2023

River: Part of the Water Cyle

17.10.2023

River - Term Specification What is a River ?

- no standard definition
- "A stream is a body of water[1] with a current, confined within a bed and stream banks. Depending on its location or certain characteristics, a stream may be referred to as a branch, brook, beck, burn, creek, crick, gill (occasionally ghyll), kill, lick, mill race, rill, river, syke, bayou, rivulet, streamage, wash, run, or runnel."
- "A **river** is a natural flowing **watercourse**, usually freshwater, flowing towards an ocean, sea, lake or another river"

River Characteristics Typical Properties

- bed with left and right banks (in direction of flow)
- filled by water (permanent / temporary)
- water level can change by time
- water has a dominant flow/current (time depending)
- flow is mainly induced by gravitation forces
 -> slope from upstream to downstream
- spring (upstream)
- mouth (downstream) to river, lake, sea
- tributaries -> river network

Rivers: Examples

River	Length (km)	Area (km ²)	Av. Q (m³/s)
Nile	6852	3255000	2660
Amazon	6448	6112000	206000
Yangtze	6380	1722000	31900
Mississippi	6051	2980000	18400
Volga	3530	1360000	8064
Danube	2857	817000	6700
Rhine	1239	218300	2900
Spree	382	9793	36
Var	114	2819	50
Estéron	66	451	7

Topographical classification

• Youthful river

steep gradient, very few tributaries, quick flow channel erodes deeper rather than wider Brazos, Trinity, Ebro

Mature river

less steep gradient, many tributaries, more slowly flow more discharge than a youthful river channel erodes wider rather than deeper Mississippi, Danube, Ohio, Thames

• Old river

low gradient, low erosive energy, flood plains Yellow river, Ganges, Tigris, Euphrates, Nile

 Rejuvenated river gradient raised by tectonic uplift Rio Grande, Colorado River

Topographical classification

• Youthful river

steep gradient very few tributaries no floodplains quick flow channel erodes deeper rather than wider examples: Brazos, Trinity, Ebro

reference: Immoor Geoterach.com 17.10.2023 Nu Youthful River Channel **Cross-Section** Narrow V-shaped Steep Sides Steep Gradient No Floodplain Fast-Moving Moves Small-Large Sediments Downcutting X = Maximum Water Velocity Rapids

Topographical classification

Mature river

less steep gradient many tributaries more slowly flow more discharge than a youthful river channel erodes wider rather than deeper examples: Mississippi, Danube, Thames

reference: Immoor Geoterach.com 17.10.2023 Nu

Topographical classification

Old river

low gradient low flow low erosive energy wide flood plains examples: Yellow river, Ganges, Tigris, Euphrates, Nile

reference: Immoor Geoterach.com 17.10.2023 No

Topographical classification

Rejuvenated river

gradient raised by tectonic uplift examples: Rio Grande, Colorado River

a "mature" valley with meandering stream on a broad floodpla

baselevel incision leaves behind elevated stream terrace

multiple stages of incision produces additional stream terrace levels

Morphological classification

- straight river
- braided river
- meandering river

River Morphodynamics

River Sediment

17.10.2023

River Morphodynamics

Sediment Transport

reference: Immoor Geoterach.com

17.10.2023

Sediment Transport

- wash load
- dissolved load
- suspended load
- bed load

-> Rouse Number

$$P = \frac{w_s}{\beta K u_s}$$

fall velocity / shear velocity von Karman constant turbulence

Mode of Transport Bed load Suspended load: 50% Suspended Suspended load: 100% Suspended Wash load

Rouse Number
> 2.5
> 1.2, < 2.5
> 0.8, < 1.2
< 0.8

What is River Engineering ?

- process of planned and performed human intervention in the course, characteristics, or flow of a river with the intention of managing the river in a beneficial way
- temporary intervention
 -> e.g. dredging
- permanent interventions
 -> e.g. construction in the river bed or at the river bank

no management without engineering!

Why River Engineering ?

- water supply and drainage
 -> drinking water reservoirs
 -> wells, bank filtration
- flood protection and management
 -> detention reservoirs
 -> dams, protection walls
- navigation
 - -> locks, navigation channels-> harbours
- energy production
 - -> hydropower stations
 - -> pumped hydroelectric energy storage
 - -> cooling for power stations (e.g. nuclear power stations)

. . .

River Engineering

Drinking Water Reservoirs

17.10.2023

River Engineering Bank Filtration: Drinking Water

17.10.2023

Flood Protection and Management

17.10.2023

River Engineering Navigation

Water Management / Energy Production

17.10.2023

River Engineering Energy Production

17.10.2023

River Engineering Dredging

17.10.2023

River Engineering Dredging

17.10.2023

Stream Straightening, Canalization and Renaturation

17.10.2023

Examples Constructions

- reservoires
- groynes
- weirs
- culvert
- locks
- bank protection
- dams and dikes
- •

17.10.2023

River Engineering Construction: Groynes

17.10.2023

Construction: Weir

to manage the flow

- weir equation $Q = C L H^n$
 - Q = discharge
 - C = weir parameter -> empiric value
 - L = length of the crest
 - H = water level over crest
 - n = depends on weir type 1.5 to 2.5

17.10.2023

River Engineering Construction: Weir

17.10.2023

17.10.2023

River Engineering

Construction: Storm Gate

17.10.2023

River Engineering

Construction: Pumpstation

17.10.2023

Weir Discharge

• Poleni equation

sharp weir

laboratory discharge measurement

for $\frac{h_1}{w} < 6$ (water level upstream / crest height)

Parameter μ

 $\mu = f(\frac{h_1}{w})$

Luft

broad, sharp edges, horizontal:	0,49–0,51
broad, rounded edges, horizontal:	0,50–0,55
broad, fully rounded crest:	0,65–0,73
sharp:	~ 0,64
rounded crest, sloped upstream side:	0,73–0,75
root shape, rounded crest:	0,75–0,79

 $\mu = 0,73$ bis 0,75

 $\mu = 0,611$

 $\mu = 0,75$ bis 0,79

V-Shape Weir for Discharge Measurement

- small discharges (e.g. creeks)
- fixed geometry
- V-shape angle α
- can be combined: e.g. R-Shape
- measured water level h₁

•
$$Q = \frac{8}{15} \mu \tan(\alpha) \sqrt{2g} \sqrt{h_1^5}$$

• typical value: $\mu = 0.58$

Construction: Culvert

to manage the flow under a construction (e.g. road)

channel flow <-> pipe flow

Construction: Culvert

channel flow <-> pipe flow

• Promenade de Paillon in Nice

17.10.2023

• Promenade de Paillon

• Promenade de Paillon in Nice

• Promenade de Paillon in Nice

17.10.2023

Modelling Approaches

- analytic, empiric model (mathematics)
- physical model (laboratory)
- numerical model (computer)
- AI artificial intelligent model (computer)

Mathematics: Analytic and Empiric Models

- Weir Equations
- Froude, Reynolds, Prandtl Numbers
- Manning-Strickler Formular
- Navier-Stokes Equation
- Shallow Water Equation
- Saint-Venant Equation

Laboratory: Physical Models

17.10.2023

Computer: Numerical Models

Computer: AI Models – Neural Networks

Computer: Numerical Models

- 1D Model -> 1D in space
- 2D Model
- -> 2D in space
- 3D Model -> 3D in space

- steady -> time independent OD in time
- unsteady -> time dependence
- -> time dependent 1D in time

River Modelling: Hydraulics

Water Flow: Physical State Variables

- water depth -> a
- water level -> h
- bed level -> z
- velocity -> u
- discharge -> q
- sediment -> s

h = z + a

Input Data

- geometry
- structures
- operational data
- measurement values
- modelling target

Background

- conceptual physical model, assumptions, empiric
- mathematical background
- numerical scheme, properties and parameters
- simulation scenario
- model set-up, calibration and validation
- model result analysis and application

Model Assumptions

1D River Model

- incompressible and homogenous fluid
- flow is mainly one-dimensional
- bottom slope is small
- small longitudinal variation of cross-sectional parameters
- hydrostatic pressure distribution

Mathematical Background

Physical Laws - 1D Saint-Venant Equations

• Continuity Equation (Conservation of Mass)

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q_l \qquad q_l = lateral \ inflow$$

- Momentum Equation (Conservation of Momentum) $\frac{\partial Q}{\partial t} + \frac{\partial (Q\frac{Q}{A})}{\partial x} + gA\frac{\partial h}{\partial x} + g\frac{Q|Q|}{C^2RA} = 0$
- two partial differential equations two unknowns - two coordinates

17.10.2023

Theoretical Background

Numerical Scheme (Abbott-Ionescu, Preismannn, ...)

 $b_s = \frac{A_{\text{o,j}} + A_{\text{o,j+1}}}{\Delta 2x_j}$

$$\alpha_{j}Q_{j-1}^{n+1} + \beta_{j}h_{j}^{n+1} + \gamma_{j}Q_{j+1}^{n+1} = \delta_{j}$$

17.10.2023

Numerical Simulation: River Modelling

GRIDPOINT

Simulation Scenario

Target Definition - Examples

- specific event from the past
- flood situation for a 100 year return period
- engineering activities: dredging, structures, ...
- sediment (, concentration, temperature) transport
- climate change
- water level forecast (navigation)

•

Modelling Process

Typical Modelling Steps

- data collection and pre-analysis and -processing
- model set-up
- model calibration
- model validation
- model application
- data post-processing
- •

Modelling Results

Result Analysis and Application

- identification of key data / information
- sensitivity and uncertainty analysis
- documentation
- presentation
- interfacing

Application Example River Rhine – Section Ruhrort - Wesel

ewerkingsgebiede Alpenrijn/Bod Hoogrijn Bovenrijn Neckar Main Middenniji Moezel/Saar Nederrijn Deltarijn Deltariin Grenzen tussen stater en deelstaten Nederrijn Middenriin Main Bovenriir Moezel/Saar leckar Data source: - Competent authorities of the eporting states This product includes geograp Hoogrijn lata licensed from Europe ational Mapping Agencie Alpenriin/ THIS # DI M1000 Conve Bodenmeer bfg

reference: bfg, iksr 17.10.2023

Application Example River Rhine – Polder Mehrum

reference: openstreetmap, googlemaps

17.10.2023

Application Example River Rhine – Pegel Duisburg-Ruhrort

https://www.pegelonline.wsv.de/gast/stammdaten?pegelnr=2770010

reference: bafg, undine 17.10.2023

Application Example River Rhine – Pegel Wesel

https://www.pegelonline.wsv.de/gast/stammdaten?pegelnr=2770040

reference: wsv 17.10.2023

Application Example

River Modelling Targets

- 1D modelling of the river section
- 2D modelling of the river section
- 2D modelling of the polder Mehrum for a flood event due to a assumed dam breach

Vase

Learning by Doing Let's start

17.10.2023