

River Modelling

Assignment1: 1D Model Set-up Steady Model

WS 2023/24

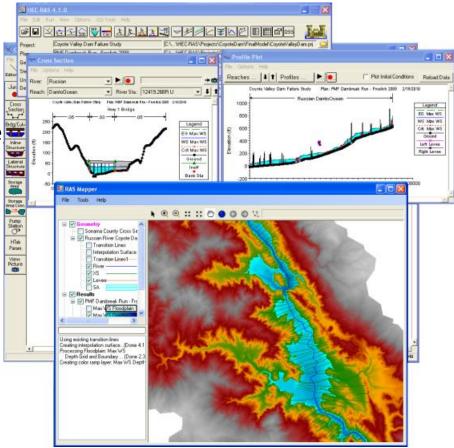
Modelling Process

Typical Modelling Steps

- data collection and pre-analysis and -processing
- model set-up (steady model)
- model calibration
- model validation
- model application
- data post-processing
- •

Hydrodynamic Software Tools Numerical Simulation

- physics: based on the Saint Venant Equations
- numerics: mainly Finite Difference Method
- examples:
- Mike11 DHI (DK)
- HEC-RAS U.S. Army Corps of Engineers (USACE) Hydrologic Engineering Center (HEC)
- ISIS1D Halcrow/CH2MHill (UK)
- SOBEK Deltares (NL)
- Kalypso1D TU Hamburg-Harburg


Björnsen Consulting Engineers (D)

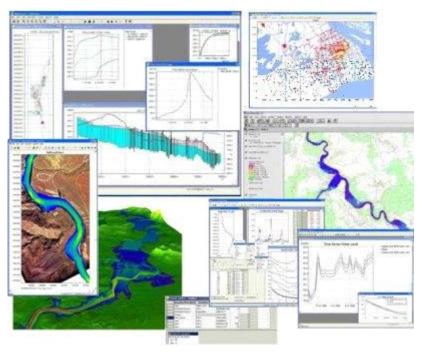
HEC-RAS

Overview

- numerical simulation of 1D hydraulic water flow in natural and artificial channels subcritical, supercritical, mixed flow regime bridges, culverts, weirs and structures
- simulation of:
 - steady flow
 - unsteady flow
 - sediment transport
 - mobile bed computations
 - water quality

HEC-RAS

Overview


- provider: U.S. Army Corps of Engineers
 Hydrologic Engineering Center
- license: public release (see web page for details) since 1995
- version: 6.4.1 (2023)
- approach: unsteady flow: 1D Saint-Venant equation finite difference method
 Preissmann implicit scheme or 4-point Box scheme
- Web page: http://www.hec.usace.army.mil/software/hec-ras/

WS 2023/24

MIKE HYDRO River - Mike11

Overview

- steady and unsteady flow in branched and looped channel networks, and flood plains
- flow through a variety of standard and complex structures
- subcritical and supercritical flow
- additional modules:
 - advection-dispersion
 - water quality and ecology
 - sediment transport
 - rainfall-runoff
 - flood forecasting
 - real-time operations
 - dam break

MIKE HYDRO River - Mike11

Overview

- provider: DHI (DK)
- license: commercial and DEMO mode
- approach: unsteady flow: 1D Saint-Venant equation finite difference method Abbott-Ionescu implicit scheme (6-points)
- Web page: <u>http://mikebydhi.com</u>

River Model Components

- geometry river location by points (geospatial location) cross section vertical to river branches / reaches
- topology connection of branches / reaches -> channel network
- physics parameter for physical descriptions of phenomena's such as gravitation, friction, ...
- structures description of different hydraulics structures, e.g. weir, culverts, bridges, pumps, ...
 - boundary cond. physical state variables at spatial model boundary
- initial condition
- simulation ۲

- physical state variables at begin of simulation period
 - period, time step, spatial approximation, numerical parameter, stability criteria

1D Numerical River Modelling River Model Components

- geometry river location by points (geospatial location) cross section vertical to river branches / reaches
- topology connection of branches / reaches -> channel network
- physics parameter for physical descriptions of phenomena's such as gravitation, friction, ...
- structures description of different hydraulics structures, e.g. weir, culverts, bridges, pumps, ...
 - boundary cond.
- initial condition
- simulation

physical state variables at spatial model boundary physical state variables at begin of simulation period period, time step, spatial approximation, numerical parameter, stability criteria

WS 2023/24

Physics – Bed Resistance

- friction between river bed and water flow
- River Rhine ?

reference: GABonn, iksr WS 2023/24

Model Set-Up (steady condition)

- selection of software product
- import of geometrical / bathymetry data
- estimation of roughness parameter
- boundary conditions for steady simulation
- review or parameter and assumptions
- •
- as preparation of unsteady simulations

Model Set-Up (steady condition)

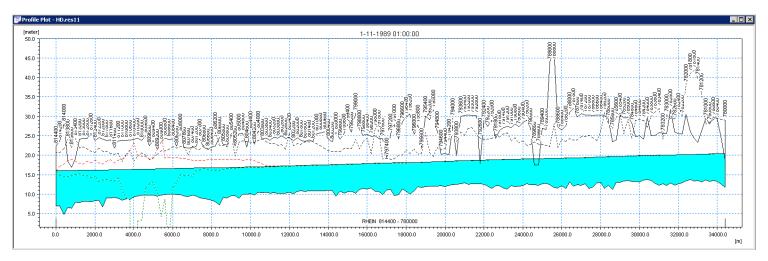
- selection of software product
 -> Mike11 or HEC-RAS
- import of geometrical / bathymetry data
 -> see prepared files on the server
- estimation of roughness parameter
 -> e.g. Strickler: 34
- boundary conditions for steady simulation
 -> Ruhrort: Q = 2260 m3/s
 Wesel: h = 14,96 m (3,74 + 11,22)

(1st approach: rounded 20 years Ø values, Wesel gauge offset 11,22 m)

Model Analysis (steady condition in a unsteady simulation)

- simulation approach (steady / unsteady)
- review or parameter and assumptions
 - -> required time step / number of cross sections
 - -> Strickler value
 - -> boundary conditions (water level -> rating curve)
 -> sensitivity analysis
- criteria (example Mike11)

 -> stability / oscillation of the solution
 -> convergence of the results

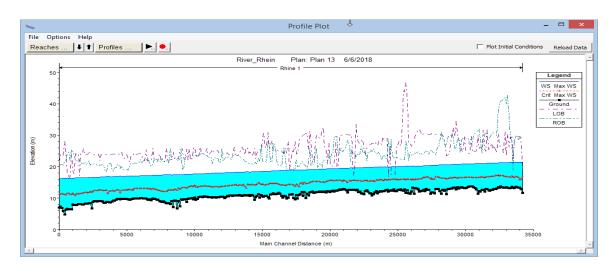


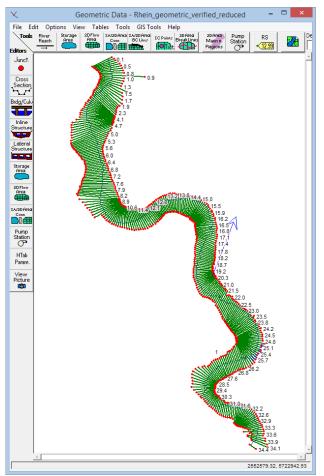
Model Set-Up Mike11

steady condition as unsteady simulation

🛑 RiverRhein_Boundary										
	Boundary Description	Boundary Type	Branch Name	Chainage	Chainage	Gate ID	Boundary ID			
1	Open	Inflow	Rhein	780000	0					
2	Open	Water Level	Rhein	814400	0					
								-		
1	Data Type TS Type Discharge: [Const	File / Value	TS Info							
								-		

🛑 RiverRhein_HDP	arameter	_ 🗆 >					
Reach Lengths Heat Balance Initial Wind	Add. Output Stratification Bed Resist. Bed	Flood Plain Resist. User Def. M Time Series Output Maps Resist. Toolbox Wave Approx Def.					
Approach C Uniform Section C Tripple zone Global Values Resistance Number: 30							
Local Values	ne Chainage	Resistance 30					




WS 2023/24

Model Set-Up HEC-RAS

- steady simulation
- steady condition as unsteady simulation
- boundary condition options normal depth, known WS, rating curve

WS 2023/24