

River Modelling

Assignment1: 1D Model Application Unsteady Model

WS 2023/24

Modelling Process

Typical Modelling Steps

- data collection and pre-analysis and -processing
- model set-up
- model calibration
- model validation
- model application
- data post-processing
- •

-> January 2023

Model Application

1D River Model: Application Options

- 1D model in the river linked to
 2D model in the polder
- simulated water levels
 - -> data analysis for flood risks assessment and identification of flooding locations
- flood management
 - -> analysis of actions to reduce flood risks

WS 2023/24

Flood Management (Prevention and Protection)

Example: actions to reduce the flood risk downstream

- technical flood protection
- renaturation of flood plains
- reactivation of natural retention areas
- new/adapted river engineering structures
- reservoirs and basins for water management
- retention polders

https://www.iksr.org/en/international-cooperation/rhine-2020/balance/fields-of-flood-prevention-and-protection/

WS 2023/24

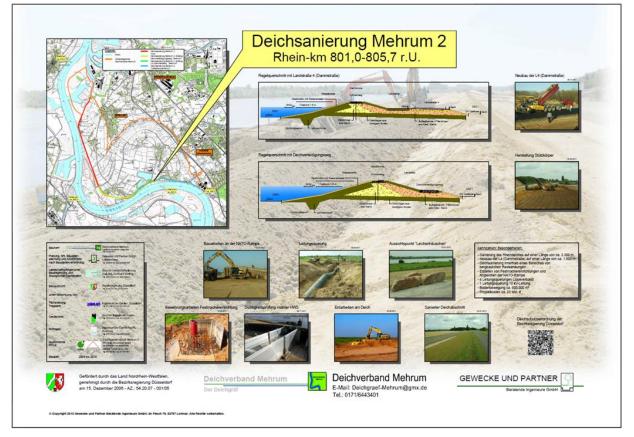
[•]

Flood Management (Prevention and Protection)

Technical Flood Protection

mobile flood protection walls

reference: Stadt Köln



WS 2023/24

Flood Management (Prevention and Protection)

Technical Flood Protection: dyke upgrading

reference: Deichverband Mehrum

WS 2023/24

Flood Management (Prevention and Protection) Renaturation of Flood Plains (increasing roughness)

Figure 5a: Example of extension on the Alpine Rhine at the mouth of R. Frutz in Au, Vorarlberg, Austria (Source: Renaturierung Alpenrhein /©: Internationale Rheinregulierung IRR/Hydra-Institute, Peter Rey)

WS 2023/24

Flood Management (Prevention and Protection)

Reactivation of natural retention areas

dyke relocation: example from downstream Netherlands

Figure 5b: Example of a river extension measure at Lent/Nijmegen, Netherlands. Dike relocation Lent, left: present situation, right: future situation (Programme "Room for the River", project "Room for the R. Waal" <u>http://www.ruimtevoordewaal.nl</u> (©: Ruimte voor de Waal.)

WS 2023/24

Flood Management (Prevention and Protection)

New/Adapted River Engineering Structures

e.g. weirs, groynes, reservoirs ... effects to navigation, morphodynamics, ecology, ...

WS 2023/24

Flood Management (Prevention and Protection)

Reservoirs and Basins for Water Management

River Ruhr (inflow at 780,1)

WS 2023/24

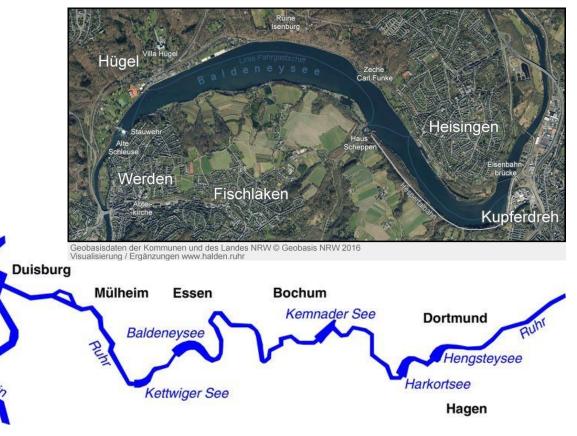
Flood Management (Prevention and Protection)

Reservoirs upstream Ruhr

- Ennepetalsperre
- Möhnetalsperre
- Hennetalsperre

WS 2023/24

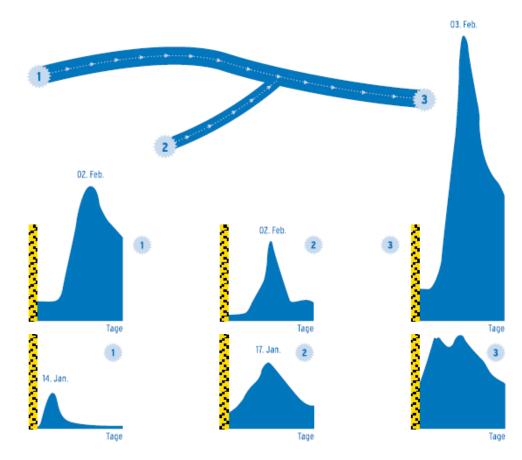
Numerical Simulation: River Modelling


reference: Ruhrverband

Flood Management (Prevention and Protection)

Reservoirs downstream Ruhr

- Hengsteysee
- Harkortsee
- Kemnader See
- Baldeneysee
- Kettwiger See


WS 2023/24

Flood Management (Prevention and Protection)

Reservoirs as Buffer

avoiding superposition of flood waves at the same time

Flood Management (Prevention and Protection)

Retention Polders

controlled flooding of polders to reduce the discharge downstream

WS 2023/24

Flood Management (Prevention and Protection)

Retention Polders

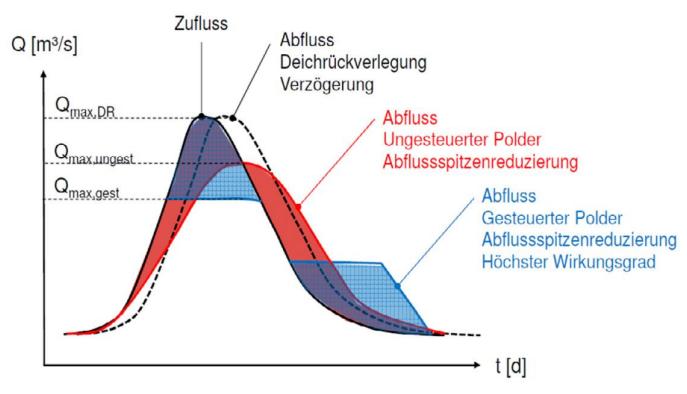


Abb. 10: Planungsvarianten Machbarkeitsstudie Bislich-Vahnum (Quelle: Bez.-Reg. Düsseldorf, BCE)

EuroAquae Semester 3

Model Application Flood Management Retention Polder Rheinschanzinsel

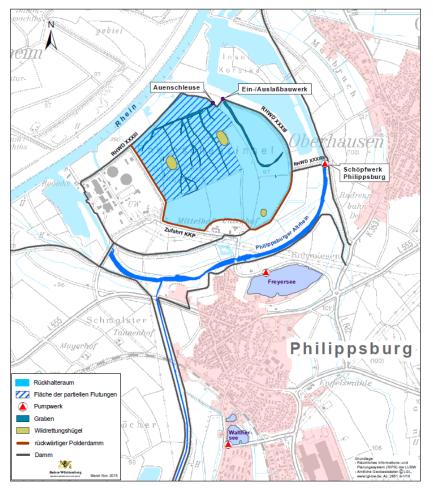
WS 2023/24

Flood Management

Retention Polder Rheinschanzinsel

2000

2018


WS 2023/24

Flood Polder for Controlled Retention

Retention Polder Rheinschanzinsel

WS 2023/24

EuroAquae Semester 3

Model Application

Flood Polder for Controlled Retention

Retention Polder Rheinschanzinsel

WS 2023/24

Options for River Rhine Section Ruhrort-Wesel

Application of Mike11/HEC-RAS Model -> Polder Mehrum

- Option1: reactivation of natural retention areas
 - adaptation of the crossections with larger flood plains
- Option 2: Retention Polder
 - defining additional inflow / outflow sources
- comparison original model <-> changed model
- impact of a planned action

EuroAquae Semester 3

Application Example River Rhine – Polder Mehrum

reference: openstreetmap, googlemaps

WS 2023/24

Original Model

Scenario: Oct/Nov 1998

- HQ10 10 return period
- max. water level downstream (Wesel): 21,47 m
- aim: decrease of max. water level downstream by a new retention polder as part of polder Mehrum location: 801.4 m

Retention Polder Rheinschanzinsel

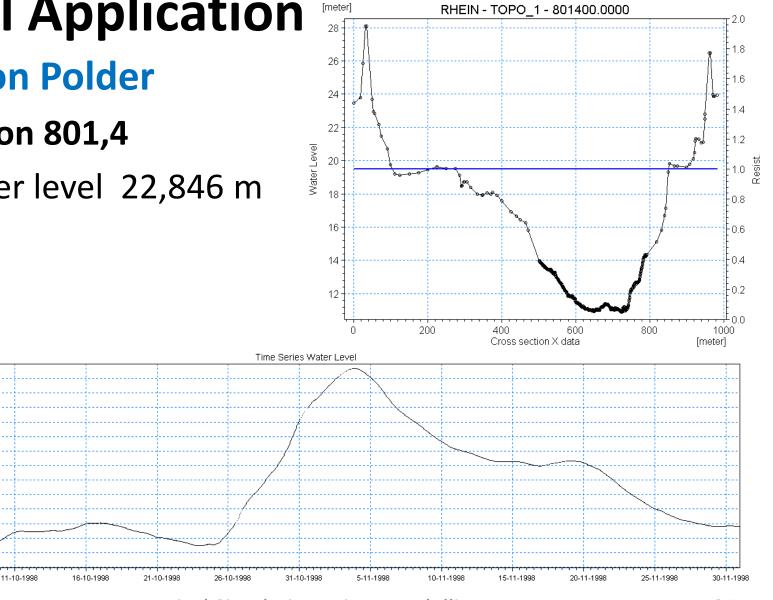
- in- and outflow gate
- width: 30 m
 length: 15 m
 height: 12 m
- max. discharge: 130 m³/s

Retention Polder

Outflow Discharge

$$Q = \frac{2}{3} \mu \sqrt{2g} w \sqrt{H^3}$$

 $\mu = \sim 0.5$ broad crest


- w = width of the outflow -> assumption 50 m
- H = water depth above crest

$$Q = \frac{2}{3} \ 0.5 \ 4.43 \ 50 \ \sqrt{H^3} = 73,8 \ \sqrt{H^3}$$

Retention Polder

Crossection 801,4

max. water level 22,846 m

WS 2023/24

6-10-1998

[meter]

23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 18.5 18.0 17.517.0 16.5 16.0 1-10-1998

Retention Polder

Outflow Discharge

 $Q = 73,8 \sqrt{H^3}$

water level > crest level

-> H = water level – crest level water level <= crest level

-> H = 0

Example crest level 22. m

alculations	×
Calculator Sub-Series	
Edit Expression Target Item: Insert Operand: Insert Operator: Insert Function:	
Expression Current Expression: i7=-73.8*pow(abs(i5-22.),1.5)*int(i5/22)	
Item No [1: H_Buhrort i2: Q_Buhrort i3: H_Wesel i4: Q_Wesel i5: H_8014 i6: Q_8014 i7: Polder	

Impact of a Retention Polder

Model Comparison

Model	max. outflow	H peak	Q max	Qmax time
original	0.00 m ³ /s	21,47 m	9127 m ³ /s	3-11-1998 21:45:00
crest = 22.0 m	57.32 m ³ /s	21,44 m	9072 m ³ /s	3-11-1998 21:40:00
crest = 21.5 m	115,25 m ³ /s	21,41 m	9014 m ³ /s	3-11-1998 21:34:59
crest = 21.0 m	185,10 m ³ /s	21,38 m	8945 m ³ /s	3-11-1998 21:34:59
crest = 20.5 m	265,01 m ³ /s	21,33 m	8865 m ³ /s	3-11-1998 21:34:59