
Software EngineeringV 28.10.15

Page 1

FDM Groundwater Simulation System
1. Introduction

These lecture notes describe roughly the development steps for an academic software
system to simulate groundwater flowusing theFinite DifferenceMethod. The theoretical
background of the groundwater flow and finite difference method is described in the
related lecture notes. It is assumed that the content is known. The development of such
system is a process to create a computer model for groundwater flow. This modelling
process includes four main parts in some iterating cycles for software extensions and
adaptations:

 analysis

 design

 implementation

 test application

Target of the analysis is the specification of the prerequisites for the model application
and the definition of the core units and main processes within the software system. In
these lecture notes this will be done for 1D and 2D problems, considering steady and
unsteady flow. The design contains the complete definition of the model type in UML.
It starts with a coarse specification of the core model type elements and their
relationships and is done in an iterative process of refinement up to a complete definition
of all necessary details. The implementation transforms the design into software,
including suitable model editors. The implementation is done in Java, using some
standard packages for numerics, user interfaces and data management. The test
application of the implemented software checks the correctness of the model and the
utilizability of the system from the engineering point of view.



EuroAquae Exercise

Page 2

2. Analysis

The first step of the analysis is to identify the main components of the planned software
system. Typical and suitable components are:

 model processor (numerical simulation engine)

 user interface

 data base / data storage

 project manager

 model reporter (document generator)

 model analysis (pre-- and post--processing)

All six components will be handled separately within the lecture notes.



Software EngineeringV 28.10.15

Page 3

2.1 Model Processor (Numerical Engine)

The analysis for the model processor is based on the applied numerical simulation
method. In these lecture notes the finite difference method is used. The model
processor is structured towards an optimized handling of the numerical code. This
includes a compromise between flexibility, adaptation options and re--usabilities of
model parts of the one side and computer performance on the other side.

First step is the identification of the main units of the model processor derived from the
finite difference method. The methods subdivided the model domain in sections using
nodes. This leads to two entities:

 Model

 Node

The model entity covers all properties of the model domain and related groundwater
flow. The nodes are used to describe the model geometry and to store the discrete
function values for the physical state variables related to groundwater flow.

The topology of the nodes can be handled implicitly in 1D by a sequence/array of the
nodes in order of their location/coordinate or in 2D by an uniform, rectangular grid of the
nodes. Otherwise a Grid entity is introduced to handle the topological relationships of
the nodes and other topological/geometrical objects.

 Grid

The physical description is done by a differential equation within the model domain and
two options of equations (given head or given flux) at the boundaries. In 1D there are
typically two boundaries: one at the left hand side node, one at the right hand side node.
In 2D the boundary conditions for a rectangular model domain can be described by four
side oriented boundary conditions (East, North, West and South) or more generalized
by a specific boundary condition for each node located at the boundary of the model
domain. The differential equation considers source terms within the model domain.
Boundary conditions and source terms are linked in the numerical approximation
independent from the dimension of the problem to nodes. The boundary conditions and
source terms leads to two entities:

 BoundaryCondition

 SourceTerm

The numerical approximation method leads to a linear equation system as implicit
scheme or a vector calculation equation as explicit scheme. The equation system is
defined by one matrix and two vectors. This leads to three entities:

 LinearEquationSystem

 Matrix

 Vector

This kind of problem analysis is in principle the same for 1D and 2D, steady and
unsteady groundwater flow. The specific properties of 1D or 2D aswell as of steady and
unsteady groundwater flow will be considered in the system design.



EuroAquae Exercise

Page 4

3. Design

The system design covers two main activities: the specification of the relationship
between the system entities and the specification of the attributes and methods for the
system entities. These lecture notes are using UML notification for these tasks. The
entities will be modelled by objects, described and classified by classes.

3.1 Relationships

The problem analysis leads to eight entities described by eight classes. Besides the
principle of generalization/specialization the main relationships can be specified by
three types of relationship:

 association

 aggregation

 composition

The class Model covers all properties to describe the groundwater flowwithin themodel
domain. This can be considered by using aggregation or composition to integrate all
other entities in theModel class. EquationSystem,SourceTerm andBoundaryCondition
are specific for the FDM model and will be covered by composition within Model. Their
life cycles depend on the life cycle of theModel. For each node of themodel domain one
source term is used to optimize the numerical processor structure. The number of
BoundaryConditions is in 1D 2, in 2D the number of nodes at the model domain
boundary.

Nodes might by used in other modelling environments as geometrical descriptors or to
exchange physical state variables with other simulation models. They are considered
by aggregation within the Model. Two (four) nodes are the minimum in 1D (2D) to
describe a model, the total number of nodes is N. The topology of the nodes can be
described implicitly in the Model class or explicitly in one Grid class. The Grid is
considered by composition in the Model. The Grid defines the topological relationships
between the Nodes by associations and maybe additional entities depending on the
Grid type.

A LinearEquationSystem consists of one Matrix and two Vectors. These three objects
are set up to solve the equation system. Matrix and Vector are both part of
LinearEquationSystem using the principle of composition.

SourceTerm and BoundaryCondition have to be located within the model domain. This
can be done by associations to Nodes: each SourceTerm and each BoundaryCondi-
tions have one association to one (or more) Node to describe the location.



Software EngineeringV 28.10.15

Page 5

Node
2(4), ..., N

N

Model

SourceTerm

BCondition
2(4), ..., N

LESystem Matrix

Vector

11

2

1

1 located by"

located by"

Grid

1

structuring"

2(4), ..., N

Figure 1: Model Processor FDM: Relationships



EuroAquae Exercise

Page 6

3.2 Properties FDM 1D Steady Flow

For each class of the model design the main properties (attributes, methods and
operators) are specified. Attributes define the data structure of the classes. Methods
and operators specify the functional structure. As methods are used to describe the
internal behaviour, operators are used to get access from outside. To prepare the
implementation some additional feature might be added to the specification. Typical
Get/Set operators for attributes are implicitly specified. All classes includes an identifier
as attribute for all related objects

FDM1DModel

float global hydraulic conductivity

float length of the model domain

integer number of nodes

Node[] nodearray Aggregation

SourceTerm[] sourcetermarray Composition

BoundaryCondition[] boundaryconditionarray Composition

LinearEquationSystem equationssytem Composition

simulateBehaviour() numerical simulation

The class FDM1DModel contains the method simulateBehaviour() to run the model
processor, defined by the sequence of numerical statements.

initialize EquationSystem by number of nodes as dimension and 0. values

Loop on all SourceTerms

set up the right hand side vector by related source term values

Loop on all BoundaryConditions

in case of head boundary condition:

set up head value in right hand site vector

set 1. on Node related ES Matrix main diagonal element

in case of flux boundary condition:

set up flux value in right hand site vector

set flux related appr. term in Node related ES Matrix row

Loop on all Nodes except those with boundary condition

set up EquationSystem Matrix values for DE approximation terms

solve EquationSystem

store results in Node attributes



Software EngineeringV 28.10.15

Page 7

FDM1DNode

The node describes the geometry information and the related physical state variables.
This can be done by extension of a generalized node class. This specification covers
the necessary attributes explicitly for 1D:

float coordinate x

float current head value as physical state

FDM1DBoundaryCondition
flag type of boundary condition (head or flux)

Node node Association

float boundary condition value

FDM1DSourceTerm
Node node Association

float source/sink term

EquationSystem

Matrix system matrix Composition

Vector system left hand side vector Composition

Vector system right hand side vector Composition

Matrix

double[][] matrix elements

Vector

double[] vector elements



EuroAquae Exercise

Page 8

3.3 Properties FDM2DSteady Flow

The classes for FDM 2D steady flow simulation are designed based on the design for
the FDM 1D steady flow simulation. Using the principle of generalization/specialization
the classes for FDM 2D are sub--classes of the FDM 1D classes. The classes for the
equation system, matrix and vector are the same.

FDM2DModel --> FDM1DModel
float global hydraulic conductivity direction 1

float global hydraulic conductivity direction 2

float length of the model domain direction 1

float length of the model domain direction 2

integer number of nodes direction 1

integer number of nodes direction 2

The class FDM2DModel overrides the method simulateBehaviour() to run the model
processor, defined by the sequence of numerical statements.

initialize EquationSystem by node number as dimension and 0. for values

Loop on all SourceTerms

set up the right hand side vector by related source term values

Loop on all BoundaryConditions

in case of head boundary condition:

set up head value in right hand site vector

set 1. on Node related ES Matrix main diagonal element

in case of flux boundary condition:

set up flux value in right hand site vector

set flux related appr. term in Node related ES Matrix row

Loop on all Nodes except except those with boundary condition

set up EquationSystem Matrix values for DE approximation terms

solve EquationSystem (ES)

store results in Node attributes

FDM2DNode --> FDM1DNode

float coordinate x1

float coordinate x2

FDM2DBoundaryCondition --> FDM1DBoundaryCondition

The boundary condition in 2D is linked to a node in 2D (FDM2DNode). As the
FDM2DNode class is a FDM1DNode sub class, the FDM2DBoundary condition canuse
the FDM1DBoundaryCondition attribute FDM1DNode as association to location node.

FDM2DSourceTerm --> FDM 1D BoundaryCondition

As for the boundary condition the FDM2DSourceTerm class can use the attribute
FDM1DNode attribute of the super class to specify the location.



Software EngineeringV 28.10.15

Page 9

3.4 Properties FDM 2D Unsteady

The unsteady FDM 2D groundwater flow simulation extends the steady FDM 2D
groundwater flow simulation. Main extension is the time coordinate for the simulation
and related time depending physical state variable head in the model domain as well
as time series for given values at the boundary conditions and source terms.

FDM2DUnsteady Model --> FDM2DModel
long start time in milliseconds

long time increment in milliseconds

long current time in milliseconds

integer number of time steps

integer current time step

simulateTimeStep() numerical simulation for one time step

simulateTimeWindow() numerical simulation for all time steps

Vector ht old head value vector

Vector ht+1 current new head value vector

The class FDM2DUnsteady Model contains the method simulateTimeStep() and
simulateTimeWindow() to run the model processor, defined by the sequence of
numerical statements.

simulateTimeWindow()
call simulateBehaviour() of parent class

for initial conditions (time step 1)

store results in head vector ht

Loop on all further time steps 2, ... number of time steps

call simulateTimeStep() for current time step

simulateTimeStep()

init all SourceTerm values with value for current time step

init all BoundaryCondition values with value for current time step

in case of explicit scheme

calculate ht+1 vector elements with explicit scheme

in case of implicit scheme

set up of equation system (similar to simulateBehaviour())

solve EquationSystem

store results of time step t+1 in head vector ht

store results in Node attributes or external (file, data base)



EuroAquae Exercise

Page 10

FDM2DUnsteadyBoundaryCondition --> FDM2DBoundaryCondition
TimeSeries flux/head time series for bc values

FDM2DUnsteady SourceTerm --> FDM2DSourceTerm
TimeSeries sink/source time series for sink/source values

TimeSeries

timearray time array of time coordinate values

valuearray value array of time related values



Software EngineeringV 28.10.15

Page 11

3.5 Properties FDM 2D Unsteady Adaptive

The unsteady FDM2D groundwater flow simulation with adaptive quad--tree based grid
extends the unsteady FDM 2D groundwater flow simulation. Main extension is the
adaptive grid and related method to the Model entity.

FDM2DUnsteadyAdaptiveModel --> FDM2DUnsteadyModel
Grid quad-tree based grid quadrilateral structure

The model is using a basic regular, structured grid for the determination of the initial
conditions and the description of the boundary conditions and source terms. This allows
to reuse the attributes and methods of the parent classes FDM2DUnsteadyModel and
FDM2DModeldirectly. The adaptive grid entity is the new attribute for the class.

The class FDM2DUnsteadyAdaptiveModel extends the method simulateTimeStep() by
the adaptation of the grid structure to the actual physical state and time depending
changes.

simulateTimeStep()

generate adaptive grid

reset simulation grid to basic grid

recursive loop on all grid cells

check refinement criteria for the grid cell

in case of refinement: sub-divide grid cell

set up simulation nodes based on adaptive grid at cell corner

transfer actual physical state to grid cells (ht values)

call simulateTimeStep() from FDM 2D Unsteady Model


