
Software EngineeringV 29.10.15

Page 1

Software Engineering: System Test
1. Introduction

These lecture notes describe typical system tests for academic/research hydroinfor-
matics software components for numerical simulation. System tests for commercial
software systems includes much more complex and different test cases, scenarios and
strategies and are not target of these lecture notes.

The system tests can be subdivided in tasks:

 formal implementation check

 analytic test cases

 performance test

 user interface test

 system component test

 case studies

Systems tests on operability on different platforms, hardware architectures and so on
will be not considered in these lecture notes. Tests of the numerical scheme such as
stability, osscillation, error propagation etc. are also not handled here.

2. Formal Implementation Check

The formal implementation check is mainly supported by programming tools such as
compiler and linker and includes the syntax check of the code as well as the
completeness of the system environment by other class packages and libraries.

In Java the Java compiler javac transforms the Java code in virtual machine code
checking the code syntax. Errors related to the syntax of the programming language are
listed to the software developer by the compiler.

The syntax check of the compiler can only test the correct use of the programming
language specified by the programming language syntax and rules. Semantic
programming “errors” can not been identified. Example is a for--Loop in Javawith correct
syntax but with a “wrong” semi--colon after the for statement:

for (i=0;i<number;i++) ;
vector[i] = 2.* load.getValue(i);

The completeness of themachine code is checked by the linker tools for compiler based
programming languages. As Java is using a mixed compiler/interpreter approach this
task is done by the compiler and during the execution in the Java virtual machine.
Generating the virtual machine code the compiler is looking for the required class links
within the CLASSPATH environment. Missing class files or class method will be
compiled from source or viewed by compiler messages. Similar is done during
execution of virtual machine code within a Java engine / Runtime environment. Missing
classes will be viewed by related Java exceptions to the runtime environment.



EuroAquae Exercise

Page 2

3. Analytic Test Cases

The analytic test cases are set--up to check the basic numerical/functionality of the
specific hydroinformatics system and to identify existing problems within the source
code of the related numerical simulation component. Key idea is to specify simple test
cases with known results by analytic solutions or physical inside and with a reduced
number of relevant parameters with impact on the results.

The impact of a system parameter to the numerical simulation results can be eliminated
by using standard, normalized values such as 0 or 1. Parameter multiplied to equation
terms such asmaterial constants can be set to 1 in thewhole model domain to eliminate
their impact on the numerical solution. Parameter added to equation terms such as
loads/source terms in the domain or at the boundary can be set to 0 to eliminate their
impact on the numerical solution. The geometry can be simplified by regular structures
and same, normalized properties in all dimensions. Physical behaviour can be reduced
to phenomena in lower dimension, e.g. checking 1D behaviour for a 2D system.

3.1 Example FDM 2D

This section will specify some basic test cases for a groundwater 2D FDM system for
rectangle shaped model domain with global hydraulic conductivity values. Parameters
to specify the test cases are:

 N1,N2 number of nodes in direction 1 and 2

 L1,L2 length of model domain in direction 1 and 2

 K11,K22 hydraulic conductivity in direction 1 and 2

 w(x1,x2) source/sink term in the model domain

 BC North boundary condition on the north side, h or q with given value

 BC South boundary condition on the south side, h or q with given value

 BC East boundary condition on the east side, h or q with given value

 BC West boundary condition on the west side, h or q with given value

The combination of all parameter and related suitable value sets leads to an enormous
number of test cases. Not all of them have tcarry out. An intelligent selection will lead
to an efficient analytic check and problem identification in case of failed tests. Examples
for basic analytic test cases will be explained.

Test case 1 is checking the impact of the node number. All other parameters are set to
0 or 1, the boundary conditions to a fixed head of 0. This leads to a constant head field
h(x1,x2) = 0 without any flow. The minimum number of nodes is 3 (one inner node). The
number can be varied for larger odd and even node number. The variation of the node
number will be done for both directions in parallel or independent.

Test case 2 is checking the impact of the system length. The variation of the length in
both directions is done in combination with different node numbers to test typical space
approximation combinations.

Test case 3 is checking the impact of the hydraulic conductivity. Similar to test case 2
the Kii values will be used in several variations of same and different values. Values
equal 0 will lead to a singular matrix. Setting the value of one direction to a “very small”



Software EngineeringV 29.10.15

Page 3

in comparison to the other direction means physically to prefer flow in the direction with
the higher conductivity. This leads to the system behaviour of a 1D system.

Test case 4 will check the impact of the boundary conditions. A fixed head value at all
boundaries will lead to a constant head field without flow. The change of one, two or
three boundary conditions to q=0 should not change this result. For four boundary
conditions q=0 the numerical system should lead to a singular matrix.

Test case 5 checks the impact of the head boundary conditions. For all four boundary
conditions the head values are set to different values. These values along the
boundaries have to be part of the final result.

Test case 6 is using a 1D analytic solution to test the system. The test will be done for
each direction. The boundary condition at two opposite sides are set to different head
values, the other both boundary condition to q = 0. A linear head function should be the
result. Same effect should have a system with different hydraulic conductivities such as
shortly described in test case 3. Setting all boundary conditions by head values with
different values, a 1D linear solution should appear in the middle section of the model
domain.

Test case 7 checks the impact of the source/sink term. Specified in the middle of the
model domain with fixed head at all four boundaries, the shape of the head distribution
should be like a circle in the middle changing towards a square shape in the directions
to the boundaries. Specified at other locations within the model domain similar head
distribution figures influenced by the boundary geometry will be expected. Located
directly at a boundary with given head value, the source/sink term should have no
impact on the result. Located on a boundary with given flux the system should give a
warning, as the boundary conditions for flux and a given source/sink term are using
different derivation order of the head variable and different physical units.

The specification of test cases can be continued by more complex combinations of
parameters. But this is out of the scope of these lecture notes. The introduced test cases
1--7 illustrate the strategies to test the basic functionality of the software system. For
commercial software development an extensive test check case catalogue should be
set up. The application of the test cases can be implemented in a test application for an
automatic check run of the system. This should be started after each change of the
system and might help during the first implementation of the system as well as for later
adaptations and extensions of the system.



EuroAquae Exercise

Page 4

Overview Test Cases 1--7

TC N1 N2 L1 L2 K11 K22 w BC N BC S BC E BC W Result

1.1 3 3 1 1 1 1 0 h 0 h 0 h 0 h 0 H=0

1.2 7 7 .. .. .. .. .. .. .. .. .. ..

1.3 10 10 .. .. .. .. .. .. .. .. .. ..

1.4 100 100 .. .. .. .. .. .. .. .. .. ..

1.5 100 205

1.6 205 100

2.1 50 50 1 3.5 1 1 0 h 0 h 0 h 0 h 0 h=0

2.2 50 50 3.5 1 .. .. .. .. .. .. .. ..

2.2 50 50 3.5 4.1 .. .. .. .. .. .. .. ..

2.3 81 81 1 3.5 1 1 0 h 0 h 0 h 0 h 0 h=0

2.4 81 81 3.5 1 .. .. .. .. .. .. .. ..

2.5 81 81 3.5 4.1 .. .. .. .. .. .. .. ..

3.1 50 50 1 1 1 21 0 h 0 h 0 h 0 h 0 h=0

3.2 50 50 .. .. 21 1 .. .. .. .. .. ..

3.2 50 50 .. .. 21 13 .. .. .. .. .. ..

4.1 50 50 1 1 1 1 0 h 2 h 2 h 2 h2 h=2

4.2 50 50 .. .. .. .. .. q 0 h 2 h 2 h2 h=2

4.3 50 50 .. .. .. .. .. h 2 q 0 h 2 h2 h=2

4.4 50 50 .. .. .. .. .. h 2 h 2 q 0 h2 h=2

4.5 50 50 .. .. .. .. .. h 2 h 2 q 0 q0 h=2

4.6 50 50 .. .. .. .. .. q 0 q 0 h 2 h2 h=2

4.7 50 50 .. .. .. .. .. q 0 h 2 q 0 h2 h=2

4.8 50 50 .. .. .. .. .. q 0 q 0 q 0 h2 h=2

4.9 50 50 .. .. .. .. .. q 0 q 0 q 0 q 0 singul.

5. 50 50 .. .. .. .. .. h 1.1 h 1.5 h 1.3 h 1.6 bound.

6.1 50 50 .. .. .. .. .. h 1.1 h 1.5 q 0 q 0 h lin x2
6.2 50 50 .. .. .. .. .. q 0 q 0 h 1.1 h 1.5 h lin x1
6.3 50 50 .. .. e--8 1 .. h 1.1 h 1.5 h 1.1 h1.1 h lin x2
6.4 50 50 .. .. 1 e--8 .. h 1.1 h 1.1 h 1.1 h 1.5 h lin x1
7.1 51 51 .. .. .. .. C 1 h 0 h 0 h 0 h 0 h sym

7.2 51 51 .. .. .. .. 1 h 0 h 0 h 0 h 0 h c-->r

7.2 51 51 .. .. .. .. N 1 h 0 h 0 h 0 h 0 h =0

7.3 51 51 .. .. .. .. N 1 q 0 h 0 h 0 h 0 error



Software EngineeringV 29.10.15

Page 5

4. Performance Test

Numerical methods implemented in hydroinformatics systems require computer
performance in respect tomemory andnumber crunching. Both canbe estimated based
on the mathematical description of the applied numerical method and measured during
application. Themeasured data for memory and calculation time depends hardly on the
used hardware platform and software/operation system environment. Usually the
performance test is done on a “typical” platform to check the expected relationships of
required computer memory and performance to the main system properties.

There are several tools available to support the performance test of systemapplications.
Besides internal functions of system development toolkits, external tools provide
system performance monitoring, analysis and reporting functionalities. Typical
examples are profiler or debugger. These lecture notes did not consider these tools for
commercial software development. Some simple “manual” performance test methods
for Java applications will be used as examples for academic/research oriented system
development.

4.1 Example FDM 2D

The performance properties of the introduced finite difference method example for 2D
groundwater flow are mainly specified by the classes/objects to describe the FDM 2D
model, the method to set--up and solve the equation system and the equation system
itself. The impact of the different model parameter can be analysed and described by
related relationships. These relationships canbe tested bydoing relatedmeasurements
with the developed software tool.



EuroAquae Exercise

Page 6

Memory

Memorymeasurement in Java can bedone simplified by amethod of theRuntime class:

Runtime.getRuntime().totalMemory()

As the internal memory management in the Java environment is implemented in the
garbage collector, the Runtimemethod returns the actual managedmemory. Thismight
be different from the actual required memory of the hydroinformatics system. Typical
behaviour of garbage collectors is to require newmemory in larger blocks. However, the
result of the Runtime method can be used to get the dimension of the required memory
during the different steps of the system performance.

The total amount of memory can be estimated by the used objects and their variables.
Critical for memory are arrays and sets of objects with larger numbers of related entities.
The number of nodes is the critical attribute in case of FDM 2D. The number of node
objects with coordinates and physical state variable hn, as well as the number of
source/sink term is proportional to the nodenumber. Thenode numberN in 2D is related
product of the two node numbers in each direction N1 * N2. Assuming a similar node
number in both directions the total node number of the system is proportional to the
number of nodes in one direction N1D.

N~ N21D
The equation system consists of two vectors and one matrix. The size of both vectors
is proportional to the node number N. The dimension of the matrix is N which leads in
case of the full storage of the matrix to N2.

(8--1) mem K~ N2~ N41D
Using 8 bytes per element, typical numbers of memory for the sparse matrix are:

N1D N Memory Sparse Matrix MB Memory Band Matrix MB

10 100 0.1

20 400 1.2 0.1

50 2500 48.0 1.0

100 10000 762.5 7,6

200 40000 12208.0 61,0

500 250000 954.0

1000 1000000 7630.0

As most matrix elements are 0, other storage structures might be useful. Example is a
band matrix with a specified number of diagonals (bandwidth b). For FDM groundwater
2D the bandwidth is specified by the number of nodes in direction 1.Using this approach
the memory size of the matrix is defined by:

(8--2) mem K~ b N~ b N21D~ N31D
Changing the approximation level by a factor of 2 for the number of nodes in both
directions, the number of nodes will increase by a factor of 4 and the required memory
space for the matrix will increase by a factor of 8.



Software EngineeringV 29.10.15

Page 7

Calculation Time

Time measurement in Java can be done simplified by a method of the System class:

System.currentTimeMillis()

The method returns the actual system time in milli seconds. Using this before and after
critical code parts, the difference is the used time. However, this time is the total time
and might consider parallel garbage collector operations, operation system activities
and any other process performance on the computer.

The required calculation time is mainly specified by the set--up of the equation system
and solving the equation system. Setting--up the equation system is a loop on all nodes
with the related finite difference approximation equation. This is proportional to the node
number N.

(8--3) time ES1~ N

ES1 Method to set up the linear equation system

Solving the equation system requires a decomposition of the matrix and forward--back-
ward elimintaion of the unknown variables. For a sparse matrix the calculation time is
proportional to N to the power of 3; the forward--backward elimination to N to the power
of 2.

(8--4) time ES2~ N3

ES2 Method decomposition sparse matrix

(8--5) time ES3~ N2

ES3 Method forward--backward elimination

Equations (8--3) to (8--5) show, that the decomposition effort is critical for the calculation
time for this implicit numerical method.

(8--6) time FDM2D~ N3~ N61D
FDM2D finite difference method for 2D groundwater flow

Changing the approximation level by a factor of 2 for the number of nodes in both
directions, the calculation time for the whole system will increase by a factor of 64 !

As described in the analysis of the memory the performance can be enhanced by using
a bandmatrix structure.

(8--7) time ES2~ b2 N

(8--8) time ES3~ b N

The decomposition effort is still critical for the calculation time for this implicit numerical
method. However the exponent has changed significant:

(8--9) time FDM2D~ b2 N~ N41D
Changing the approximation level by a factor of 2 for the number of nodes in both
directions, the calculation time for the whole system will increase by a factor of 16.


